
Land Use Policy 120 (2022) 106291

Available online 4 August 2022
0264-8377/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Towards unlocking sustainable land consumption in sub-Saharan Africa: 
Analysing spatio-temporal variation of built-up land footprint and 
its determinants 

Yacouba Kassouri a, Andrew Adewale Alola b,c,d,* 

a Department of Economics and Finance, Nisantasi University, Istanbul, Turkey 
b Department of Economics, School of Accounting and Finance, University of Vaasa, 65101 Vaasa, Finland 
c Vaasa Energy Business Innovation Centre, University of Vaasa, 65101 Vaasa, Finland 
d Department of Economics and Finance, South Ural State University, Chelyabinsk, Russian Federation   

A R T I C L E  I N F O   

Keywords: 
Built-up land footprints 
Biocapacity 
Globalization 
Convergence 
Sub-Saharan Africa 

A B S T R A C T   

A systematic understanding of the dynamics of land consumption is extremely important for human well-being 
and especially vital for the ecological balance of the sub-Saharan Africa (SSA) region. Remarkable land use/land 
cover changes due to climate change, urbanization, and food demand have affected the spatio-temporal dy
namics of built-up land footprints (BLFs) in SSA. By using spatial econometric techniques, this study investigates 
the spatio-temporal evolution and key drivers of built-up land footprints in 28 SSA countries from 2000 to 2017. 
Our results show how an appropriate consideration of the role of spatial effects can shed new insights into the 
convergence process of built-up land footprints. Foremost, the study reveals significant evidence of both absolute 
and conditional β convergence in BLFs over the experimental period. Additionally, the estimation indicates that 
biocapacity plays an important role in cutting built-up land footprints in SSA countries as there was a faster 
conditional convergence in countries with higher biocapacity. Moreover, the study outlined that the promotion 
of globalization and urbanization draws more pressure on the built-up environment and makes it challenging to 
reduce BLFs in SSA. In addition, this study found evidence for an inverted U-shaped nexus between per capita 
built-up land footprints and per capita gross domestic product (GDP), supporting the prediction of the envi
ronmental Kuznets curve (EKC) hypothesis.   

1. Introduction 

Over the past decades, the sub-Saharan Africa (SSA) has been 
considered a dynamic and rapidly developing region with significant 
biophysical and socioeconomic changes (Brink and Eva, 2009). At the 
global level, approximately 50% of the expansion of urban land con
sumption outpaces population growth, which is expected to add 1.2 
million km2 of new urban built-up land to the world over the three 
decades (World Cities Report, 2020). Such sprawl increases concerns 
about the rate and extent of land cover change in the global research 
agenda, particularly with the growing awareness of the critical role of 
land cover in the climate system (Mahmood et al., 2010; Rounsevell and 

Reay, 2009). Driven by rapid urban expansion (demand aspect), the 
human impact has exceeded natural biocapacity (supply aspect) such 
that the majority of the resource stocks bear the human footprint (Bor
ucke et al., 2012, 2013; Herrmann et al., 2020). In the African context, 
the fragmented and disorderly expansion of urban space has put severe 
pressures on built-up area requirements with subsequent consequences 
on natural vegetation cover, biodiversity, socioeconomic stability, food 
security, and hydrological processes (Côté-Roy and Moser, 2019; Erb 
et al., 2007; Foley et al., 2005). Thus, this raises new questions about the 
temporal and spatial dynamics of the built-up land footprint per capita 
to monitor a reasonable and rational development of built-up land of the 
SSA region. 
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Built-up land footprints, originally derived from the concept of 
ecological footprint, captures the amount of land needed for in
frastructures, such as houses and buildings, bridges, roads, car-parks, 
and manufacturing activities (Rees and Wackernagel, 2008), that is 
the areas designed for urban facilities. The built land footprint has 
witnessed the highest average growth rates among the subcomponents 
of the ecological footprint (Ke et al., 2018; Solarin et al., 2021). It has 
expanded from 81 million global hectares (gha) in 1961 to about 473 
million gha in 2016, which poses a severe threat to ecological security 
(Global Footprint Network, 2020). In the African context, urban land 
acquisitions are increasingly occurring at the expense of agricultural and 
grazing land, resulting in a significant decrease in the amount of avail
able farm land to the extent that food production can be significantly 
affected for a long time (FAOSTAT, 2001; Pham et al., 2013). 

Consequently, built-up area expansion may drive unsustainable 
environmental change and increase the risk of food insecurity. Given 
these consequences, studies have extensively presented the influencing 
factors of built-up land footprints (Clancy, 2008; Fan et al., 2021; Lai 
et al., 2021; Lu et al., 2019; Lyu et al., 2021; Sanchez and Leakey, 1997; 
Shao et al., 2020; Uisso and Tanrıvermiş, 2021). Several studies high
light urban development as one of the critical drivers of built-up land 
footprints. Other determinants of the built-up land footprints may 
include demographic changes, income, and technological factors (Jun
liang et al., 2010; Lai et al., 2021; Marquart-Pyatt, 2010; Sajjad and 
Iqbal, 2012; Zhao et al., 2018). While existing literature acknowledge 
that globalization, population aspect, and economic-related activities as 
drivers ecological footprints (Rudolph and Figge, 2017; Alola et al., 
2021a, 2021b), these factors especially globalization and biocapacity 
has been overlooked in the study of built-up land footprints. Moreover, 
the transactions of land known as "land grabbing" (i.e., the appropriation 
of productive land by foreign investors) have played an essential role in 
the development of land footprint in Africa (Cain, 2014; Coscieme et al., 
2018, 2016; Watson, 2014). As documented by Coscieme et al. (2016), 
having higher biologically productive land (biocapacity) like most SSA 
countries can increase land grabbing and cause severe environmental 
damage to the built-up environment, especially in the age of globaliza
tion of the land market. The question that arises is how the expansion of 
globalization and biocapacity have affected built-up land footprints in 
the SSA countries. 

Another strand of the literature focused on the degree of persistence 
and non-stationarity in ecological footprints (Kassouri, 2021a; Solarin 
et al., 2021; Solarin and Bello, 2018; Ulucak et al., 2020; Ulucak and 
Apergis, 2018; Yilanci et al., 2019). These studies examine the stochastic 
convergence characteristics of ecological footprints based on panel 
and/or time series unit root tests. Technically, a stationary property of 
ecological footprint implies that the ecological footprint per capita series 
displays mean-reverting property, and shocks are short-lived; otherwise, 
the effects are permanent in the long run. In a more comprehensive 
study, Solarin et al. (2021) examine the degree of persistence of shocks 
to built-up land footprints. The authors conclude that there is hetero
geneity in the persistence of the built-up land footprint across 89 
countries. However, the authors conclude that shocks to built-up land 
footprints are momentary, and there is no need to intervene when the 
built-up land footprint departs from its trend path. The rationale behind 
this narrative is that built-up land footprint displays some degree of 
stochastic convergence in the long term. 

This paper contributes to the attendant literature in three significant 
ways. Firstly, this is one of the rare studies to test the convergence 
characteristics of built-up land footprints in 28 SSA countries over 
2000–2017. This study is one of the rare studies to test the convergence 
characteristics of built-up land footprints in SSA countries. The SSA re
gion is selected for the study because the urban landscape is constantly 
experiencing spatial and temporal changes stemming from the rapid 
urban development of the region. In this context, pressure will mount on 
urban managers to effectively monitor and manage these changes in 
cities. Our study contributes to the existing literature by providing one 

of the first evidence-based insights into the spatio-temporal dynamics of 
built-up land footprints in order to raise awareness and concern for 
better policies and planning built-up land development and urban 
growth in the SSA region. Secondly, the field of research is enriched by 
identifying the triggers of built-up land footprints, including per capita 
biocapacity, per capita GDP, population density, globalization, indus
trial structure, and urbanization in shaping the convergence process. 
The consideration of these key drivers significantly increases the policy 
relevance of our study, which will help policymakers and academicians 
in the decision-making process. Thirdly, the spatial dependence effect is 
included in the analysis to examine how the interactions between SSA 
countries influence the path of convergence of built-up land footprints. 

This study proceeds as follows. In the following section, we discuss 
previous studies and the theoretical background of our study. The un
derlying data and methods used are presented in Section 3. Section 4 
introduces the empirical findings based on the different methods used. 
Section 5 provides a thorough discussion of the empirical findings. 
Finally, the conclusion the policy implications of our analysis are pre
sented in Section 6. 

2. Theoretical underpinnings of convergence 

Initially, convergence was used in the neoclassical growth theory 
model to decrease capital accumulation returns (Solow, 1956). This 
elucidates the probability of a catch-up mechanism between capital- 
abundant countries and developing countries over a duration of time. 
Therefore, developing countries are anticipated to grow faster than rich 
ones, leading to convergence. The concept has progressed through the 
years, and the convergence hypothesis has aroused the interests of 
environmental science researchers to investigate the convergence in 
pressure on the environment (Salvati and Zitti, 2008). 

Convergence in environmental indicators provides adequate infor
mation for guiding policies related to a complex system characterized by 
the interactions of ecological and socioeconomic factors. The conver
gence analysis allows countries to balance economic and environmental 
outcomes within a region based on the equal pollutant intensity rule. 
Thus, countries with lower levels of pollutant emission intensity have a 
greater right to pollute and countries with a greater pollutant emission 
intensity should control their emissions at a certain level (Aldy, 2006). 
This mechanism clearly illustrates the convergence process in environ
mental pressure across different countries. 

2.1. Empirical literature review 

Following this theoretical framework, several studies have inten
sively explored the convergence characteristics of various environ
mental and ecological pollutants. Table 1 summarizes the existing 
studies on the convergence of environmental pressures. 

A survey of the existing literature shows that a significant strand of 
literature examines the convergence property of various pollutants, 
including carbon dioxide emissions (CO2), Sulphur dioxide (SO2), Ni
trogen dioxide (NO2). This wave of studies is highlighted in Panel A 
(Table 1). Recently, the analysis of convergence based on pollutant 
emissions has been criticized by several studies and the use of more 
comprehensive indicators plays an increasing role in the convergence 
literature. Thus, the ecological footprint has been considered as a 
meaningful indicator to capture the complex dynamic to measure 
environmental and ecological sustainability (Dietz et al., 2007; Galli 
et al., 2014; Galli et al., 2012). In this light, emerging literature tests the 
convergence hypothesis using footprint items and other ecological in
dicators (Panel B). The emerging literature focuses only on ecological 
footprints and ignores its other sub-components. However, as recently 
pointed out by (Solarin et al., 2021), the expanding footprints of built-up 
areas deserve further attention given the great interconnection between 
built-up environment and human well-being. Additionally, the realiza
tion of the sustainable management of built-up land is essential to build 
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sustainable cities and plays an essential role in the sustainable devel
opment goal (SDG 11) (UN, 2016). Consequently, built-up land foot
prints are beginning to take central stage in discussions on sustainable 
development, especially in SSA. 

3. Methods and data 

3.1. Spatial correlation analysis 

Prior to the analysis of convergence, we estimate whether spatial 
effects of the built-up land footprints are in the SSA countries. Thus, the 
Moran’s I statistic developed by Moran (1948) is computed to examine 
the spatial correlation of built-up land footprints. 

Moran′s I =
n
∑n

i=1
∑n

j=1Wij(zi − z)(zj − z)
s2
∑n

i=1
∑n

j=1Wij
∀ⅈ = 1, ..., n ∧ ∀j

= 1, ..., n (1)  

where, 

z =
1
N

∑n

i=1
zi, s2 =

1
N

∑n

i=1
(zi − z)

2

(2) 

where zi represents the annual of built-up land footprints in the 
country ⅈ. z denotes the average value of the built-up land footprints. Wij 

represents the spatial weight matrix between country ⅈ and j. Generally, 
the spatial weight matrix is between 0 and 1. Wij = 1 when country ⅈ and 
j share a common border and Wij = 0, otherwise. Hence, the larger the 
absolute Moran’s I value, the stronger the spatial autocorrelation. s2 

denotes the variance of the sample. In addition, Moran’s I statistic 
ranges between − 1 and 1, suggesting positive and negative correlation, 
respectively. 

3.1.1. The σ convergence method 
The sigma (σ) convergence method captures the decline in dispersion 

across panel members. Sigma convergence is measured as the develop
ment of the standard deviation over time and the formula can be 
expressed as follows: 

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(zi − z)2

√

(3) 

The sigma-convergence approach has been extensively used in 
different fields (Rey and Dev, 2006; Rey and Montouri, 2010). 

3.1.2. β convergence method 
The β convergence method can be divided into conditional and ab

solute β convergence. The β convergence assumes that built-up land 
footprints of the SSA countries will converge to a common steady-state. 
At the same time, the former refers to that built-up land footprints 
converge to different steady states for all countries that are conditional 
on country-specific characteristics. By taking the spatial structure into 
account in the analysis, the spatial autoregression model, spatial error 
model, and the spatial Durbin model are all estimated. 

(1) Spatial absolute (unconditional) β convergence model 

Spatial autoregression model(SAM) : ln(
zit

zit− 1
)

= ρWln(
zit

zit− 1
)+ βln(zit− 1)+ vit (4)  

Spatial error model(SEM) : ln(
zit

zit− 1
) = βln(zit− 1)+ ηitandηit = λWηit + eit

(5)  

Table 1 
Previous studies.  

Author (s) Country Data Variables used Method (s) Conclusion 

Panel A: Pollutant emissions   
(Strazicich and List, 

2003) 
21 industrial countries 1960–1997 Per capita CO2 emissions Stochastic and conditional 

convergence 
Convergence 

(Aldy, 2006) 100 countries 1960–2000 Per capita CO2 emissions Non-parametric techniques Convergence for OECD and mixed results for 
88 countries 

(Huang and Meng, 
2013) 

30 Chinese provinces 1985–2008 CO2 emissions Spatio-temporal 
techniques 

Convergence 

(Hao et al, 2015) 29 Chinese provinces 1995–2011 CO2 emissions Stochastic and β 
convergence techniques 

Convergence 

(Brännlund and 
Karimu, 2018) 

94 countries 1971–2008 Environmental 
performance index 

β convergence model Mixed results 

(Awaworyi Churchill 
et al., 2018) 

44 developed countries 1900–2014 CO2 emissions Stochastic convergence 
approach 

Convergence 

(Erdogan and 
Acaravci, 2019) 

28 OECD countries 1960–2014 CO2 emissions Stochastic convergence 
approach 

Convergence 

(Solarin and Tiwari, 
2020) 

32 OECD countries 1850–2005 SO2 emissions Stochastic convergence Convergence 

(Payne and Apergis, 
2021) 

65 countries 1972–2014 CO2 emissions Stochastic and club 
convergence methods 

Mixed evidence 

(Zhang and Hao, 
2020) 

Chinese province 2000–2014 SO2 and chemical 
oxygen demand 

β convergence model Conditional β convergence 

(Tiwari et al. 2021) USA 1976–2014 CO2 emissions Stochastic and club 
convergence methods 

Convergence 

(Cui et al., 2021) China 2005–2012 NO2 pollution Spatial econometrics Convergence 
Panel B: footprint items and ecological indicators      

(Salvati and Zitti, 
2008) 

3 spatial aggregation of the 
Italian peninsula 

1990–2000 Land degradation index Non-parametric techniques Nonlinear convergence across provinces 

(Jiang et al., 2019) Central Asia 1992–2015 Desertification risks Spatial metrics Divergence patterns from 1992 to 2000 and 
Convergence pattern for 2008–2015 

(Ulucak et al. 2020b) 23 SSA countries 1961–2014 Ecological footprint Club convergence Convergence 
(Erdogan and 

Okumus, 2021) 
89 countries 1961–2016 Ecological footprint per 

capita 
Panel KPSS and club 
convergence 

Divergence with several convergent clubs  
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Spatial Durbin model(SDM) : ln(
zit

zit− 1
)

= ρWln(
zit

zit− 1
)+ βln(zit− 1)+ δWln(zit− 1)+ uit

(6) 

Principally, a panel setting is considered for the analysis with zit, 
i = 1,…N, t = 1,. T, where N (number of countries under investigation) 
and T (the period under investigation) denote panel members and pe
riods, respectively. W represents the row-standardized spatial weight 
matrix, ρ, δ and λ represent the respective coefficients of spatial autor
egressive model and spatial autocorrelation model, vit , eit, and uit are the 
disturbance terms, β represents the convergence coefficient, which will 
indicate the existence of absolute (unconditional convergence) if its 
value is negative and statistically significant. 

The concept of beta – convergence is derived from the traditional 
neoclassical growth models presented in the Solow-Swan model. To 
estimate beta – convergence, the Eqs. 4, 5, and 6 are estimated, where 
the growth rate of built-up land footprint per capita ( zit

zit− 1
) is presented as 

a function of the initial level of built-up land footprint per capita (zit− 1). 
A negative sign on the coefficient associated with (zit− 1) corresponds to 
an implied rate of convergence in built-up land footprints. 

(2) Spatial condition β convergence model 

Spatial autoregression model(SAM) : ln(
zit

zit− 1
)

= ρWln(
zit

zit− 1
)+ βln(zit− 1)+φlnxit + vit

(4′)  

Spatial error model(SEM) : ln(
zit

zit− 1
) = βln(zit− 1)+φlnxit + ηitandηit

= λWηit + eit (5′)   

where, xit represents the key drivers of built-up land footprints. In 
Equations (4)′-(6)′, the external factors that influence the convergence 
property of built-up land footprints are accounted for. Additionally, the 
LM procedure proposed by Anselin et al. (1996) is being followed to 
select the most appropriate model from the SDM, SEM, and SAM. 

3.2. Data 

3.2.1. Built-up land footprints 
The built-up land Footprint is calculated based on the area of land 

covered by human infrastructure — transportation, housing, industrial 
structures, and reservoirs for hydro-power. Built-up land may occupy 
what would previously have been cropland. The per capita built-up land 
footprint calculator is based on national footprint accounts data for each 
country. This results in a matrix that uses a country’s average con
sumption profile to derive the level of footprint. 

Consistent with recent empirical studies (Kassouri, 2021b; Solarin 
et al., 2021), annual dataset of built-up land footprint data from the 
Global Footprint Network database is employed. Our sample includes 28 
SSA countries over the period 2000–2017. The countries included are 
Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Chad, 
Congo, Cote d′Ivoire, Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, 
Lesotho, Malawi, Mali, Mozambique, Niger, Nigeria, Rwanda, Sierra 
Leone, South Africa, Tanzania, Togo, Uganda, Zambia, Zimbabwe. The 

scope of the study concerning the choice countries and the sample 
period is mainly prompted by data availability. 

Fig. 1 provides a general overview of the annual built-up land foot
prints per capita in 28 SSA countries from 2000 to 2017. Overall, the per 
capita built-up land footprint in 28 SSA countries increased over time 
because the mean of built-up land footprint increased by 38%, from 
0.035 in 2000–0.048 in 2017, which coincides with the analysis of 
Solarin et al. (2021). The increase is possibly related to the African ur
banism scheme, which is characterized by the domination of informal 
settlements and economic activity (Steel et al., 2017). During the study 
period, Lesotho has the lowest built-up land footprints, while Cote 
d′Ivoire is the country with the highest built-up land footprint. The latter 
country appears to be the third most urbanized country, behind Ghana 
and South Africa, posing challenges related to pollution and emissions 
and the unsustainable use of natural resources (World Bank, 2015). 
Notably, the per capita built-up land footprint from certain countries 
included Cameroon, Ghana, and South Africa, were initially small but 
increased relatively rapidly in 2017, which seems to confirm the prev
alence of convergence ’catches up’. 

However, only a more formal analysis to test convergence will pro
vide a clear picture of the convergence characteristics of built-up land 
footprints among SSA countries. Furthermore, consistent with our pre
vious observations, there exists important cross-country difference 
within the SSA region as depicted in Fig. 2. 

3.2.2. Drivers of BLF and definitions 
To explore the sensitivity of the convergence rate to the drivers of 

BLFs, the role of biocapacity, globalization, urbanization, population 
density, per capita GDP, and the industrial structure are accounted for in 
the estimation. It is important to stress that this study follows the 
STIRPAT specification (Stochastic Impacts by Regression on Population, 
Affluence, and Technology) model as the reference theoretical and 
analytical framework to investigate the effects of different variables on 

built-up land footprints ( Ehrlich and Holdren, 1971; Dietz et al., 2007; 
York et al., 2003). Specifically, Ehrlich and Holdren (1971) had initially 
illustrated the environmental impact of population, affluence, and 
technology (IPAT) which has been further modified to include other 
associated factors that drives population such as urbanization, global
ization, e. t.c. Moreover, the following variable has been considered in 
our analysis:  

(i) Per capita biocapacity can be defined as the biological capacity of 
the ecosystem to generate resources and absorb waste per person. 
Most SSA countries enjoy a relatively higher biological produc
tive land (Global Footprint Network, 2020). It has been reported 
by Coscieme et al. (2016) that the abundance of biologically 
productive land in most of the African countries is an essential 
driver of the massive land acquisition in the continent. Thus, the 
favorable ecological condition of African countries leads them to 
seek short-term economic gains by sacrificing their environ
mental and ecological sustainability (Sumaila et al., 2015). This 
phenomenon may increase the footprint of built-up land and alter 
the ecological balance of the region. On the other hand, some 
analysts indicate that biocapacity is an imperative gauge for 
sustainability since a higher biological capacity increase the earth 
capacity to absorb waste and other harmful gases, therefore, 
alleviating the environmental stress in the areas designed for 
urban facilities (Majeed and Mazhar, 2020; Shujah-ur-Rahman 

Spatial Durbin model(SDM) : ln(
zit

zit− 1
) = ρWln(

zit

zit− 1
)+ βln(zit− 1)+ δWln(zit− 1)+φlnxit + uit (6′)   
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et al., 2019). Based on this narrative, one should expect bio
capacity to influence built-up land footprint reduction in SSA 
countries positively. However, in countries that are biologically 
rich a reverse effect is likely to occur, mainly because poor 
environmental legislations along with their dependence on nat
ural capital may amplify the conversion of natural habitat into 

built-up areas, which may generate a larger construction land 
footprint instead of reducing the footprint. From this perspective, 
one may argue that the levels of biological capacity can positively 
or negatively influence built-up land footprints, and only a formal 
analysis may enable us to elucidate this conflicting evidence. 

Fig. 1. Overview of built-up land footprints from 2000 to 2017.  

Fig. 2. Average built-up land footprints across SSA countries.  
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(ii) Globalization. The environmental implications of globalization 
have been extensively investigated (Akadiri et al., 2019; Erdoğan 
et al., 2021; Salahuddin et al., 2019; You and Lv, 2018), but the 
effects of globalization on land footprint has not been examined 
in the current literature. With the expansion of globalization, 
land use agents have changed, particularly in SSA countries. It 
has been reported that millions of hectares of farmland in Africa 
were leased to Chinese and other multinational investors from 
2006 to 2012 (Meine and van, 2016). The rate at which land 
grabbing consumes large quantities of physical spaces in urban 
and rural areas destabilizes the land use and landscape dynamics 
with severe impacts on environmental sustainability (Carroccio 
et al., 2016; Lazarus, 2014). Estimates for 2004 indicate that 
globalization accounts for 24% of the global land footprints 
(Meyfroidt et al., 2013; Weinzettel et al., 2013). An important 
factor contributing to the expansion of this footprint has been the 
growth in agribusiness, high capitalized farm producing com
modities for global markets. Based on these arguments, it is 
highly expected that globalization leads to the development of 
built-up land footprints in SSA countries.  

(iii) Per capita GDP. To date, there is extensive literature examining 
the environmental Kuznets Curve hypothesis using different 
footprint items. For instance, (Altıntaş and Kassouri, 2020) show 
that the Environmental Kuznets Curve (EKC) hypothesis is sen
sitive to the measure of environmental impact used. To depict the 
relationship between built-up land footprint and economic 
growth, the squared GDP is incorporated as an additional control 
variable. In this light, the existence or validity of the EKC hy
pothesis for built-up land footprints for SSA countries is 
investigated.  

(iv) Population density. It should be acknowledged that population 
density has been considered a significant indicator of changes in 
land patterns. It is well established that changes in a built-up area 
are the result of rapid population growth (Herrmann et al., 2020; 
Tan et al., 2016). As expected, the growing population in the SSA 
region is likely to exert considerable pressure on the land re
sources, leading to a significant increase in built-up land 
footprints.  

(v) Urbanization. Following the compact city and environmental 
transition theories, one might expect an increasing effect of ur
banization on built-up land footprints as urbanization increases 
the demand for built-up land and infrastructures, resulting in 
higher built-up land footprints. However, the urban moderniza
tion theory holds that urbanization tends to decrease pressure on 
resource stocks through technological improvements, enforce
ment of environmental regulation, and advanced energy struc
ture (Turok and McGranahan, 2013).  

(vi) Industrial structure, which is measured as the share of industry in 
GDP represents the industrial sector value-added expressed as a 
percentage of GDP. Although the industrial sector has been pre
sented to be less land-intensive sectors, the agriculture-related 
manufacturing sectors that mainly rely on inter-industrial in
puts from the forestry and farming sector can increase land 
footprints. Given the predominant role of the agriculture-related 
industrial sector in SSA countries, one may expect a positive in
fluence of the industrial structure on built-up land footprints 
(Pang et al., 2019). 

All the data were collected from the World Development Indicators 
(WDI) database with the exception of biocapacity and globalization, 
which have been gathered from the Global Footprint Network database 
and the Swiss Economic Institute website respectively. The summarized 
information and basic statistics of built-up land footprints and the var
iable sources are provided in Table 1.1 

4. Empirical results 

4.1. Selection of the weight matrix 

Table 2 reports the goodness of fit of 6 different row-standardized 
spatial weight matrices that illustrates the rejection of non-spatial over 
spatial lag and spatial error models. These weight matrices include in
verse distance, K-nearest neighbors (KNN), Thiessen polygon, hybrids 
between inverse distance and KNN or Thiessen polygon matrices. It is 
quite impossible to perform the analysis for each weight matrix, one 
should select the most suitable weight matrix among possible candidates 
based on goodness of fit. Specifically, the stepwise approach is adopted 
by selecting the weight matrix with the smallest Akaike Information 
Criteria and the highest R-squared as suggested in Kim et al. (2014). 
Based on goodness of fit, the K= 3 nearest neighbor’s weight matrix 
yields the smallest AIC and the highest R-squared, making it the 
preferred weight matrix of our analysis. 

4.2. Spatial dependence 

Following previous studies, the Moran’s I statistic is used to measure 
spatial dependence of built-up land footprints among SSA countries. 
Table 2 reports the Moran’s I statistic over the sample period. The 
Moran’s I statistics are statistically significant over the sample period, 
suggesting that SSA countries’ built-up land footprints are spatially 
autocorrelated. The existence of spatial autocorrelation in built-up land 
footprints is also supported by the scatter plot of Moran’s I index (Fig. 3). 

A visual inspection of the scatter plot of global Moran’s I indicate the 
existence of positive spatial autocorrelation of built-up land footprints in 
our panel members (Fig. 3). This implies that changes in built-up land 
footprints come from a local country’s built-up environment and depend 
on the development of built-up land in the surrounding countries. One 
possible explanation is the imitation of environmental policies among 
SSA countries since a similar land development scheme easily leads to 
similar development of built-up land footprints. This narrative is 
consistent with the geographic distribution of built-up land footprints 
depicted in Fig. 4. 

We depict the geographic distribution of built-up land footprints in 
the 28 SSA countries in 2017 in Fig. 3. Dark brown denotes countries 
with higher built-up land footprints, while light brown indicates coun
tries with small built-up land footprints. A positive spatial autocorrela
tion appears to exist for built-up land footprints because countries with 
higher built-up land footprints were clustered, and it was the same for 
countries with low built-up land footprints. Specifically, the per capita 
built-up land footprint is lower in Southern Africa (Botswana, South 
Africa, Lesotho, and Zimbabwe) than in Western Africa (Burkina Faso, 
Cote d′Ivoire, Ghana, Mali, Mauritania, and Guinea). This can be partly 
explained by the developmental stage of urbanization and differences in 
the vegetation coverage rate across regions (Coscieme et al., 2016). As 
discussed above, the clustering of countries with higher built-up land 
footprints can be explained by the joint environmental Action Plan 

1 It is important to stress that the variables have been log-transformed. In 
addition, the underlying variables considered in our analysis were subjected to 
multicollinearity tests before including them in the regression analysis. The 
variance inflation factor (VIF) results unravel that the data do not suffer from a 
high level of multicollinearity as the estimated VIF is well below the threshold 
of 10 (the results are available upon request). 
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(EAP) and associated Monitoring and Evaluation Plan (MEP) of the 
ECOWAS (Economic Community of West African States) Directorate of 
Environment and Natural Resources.2 Such inter-regional policy reforms 
can significantly influence the spatial patterns of built-up land footprints 
in West Africa. 

4.3. Sigma (σ) convergence 

Fig. 5 displays the general trends of built-up land footprints and 
standard deviation (σ) between 2000 and 2016. Compared to Moran’s I 
index trend; the standard deviation trend is less complicated and ex
hibits an overall decreasing trend over time. The significant decline in σ 
indicates that the deviations of built-up land footprints per capita across 
different countries gradually decreased. Intuitively, this reflects a po
tential tendency of convergence in built-up land footprints across 
countries. In other words, built-up land footprints (i.e per capita built-up 
land footprints as used) of different SSA countries may converge to a 
similar steady-state level. 

4.4. Absolute and conditional β convergence 

4.4.1. Model selection 
Prior to the analysis of the spatial convergence of built-up land 

footprints, the Lagrange Multiplier (LM) test proposed by Anselin et al. 
(1996) is performed to choose the most appropriate model from the 
spatial error model, spatial autoregressive model, and spatial Durbin 
model. Table 2 displays the results of the model selection tests. Addi
tionally, the LM test and Robust LM test are considered to evaluate 
whether spatial effects need to be considered. In both cases, the LM 
statistics are strongly significant at the 1% level of significance, indi
cating that spatial lag (autoregressive) and spatial error effects should be 
considered in our analysis. Then, the Wald test and the LR test are 
adopted to evaluate whether the spatial Durbin model can be simplified 
to the spatial autoregressive and spatial error model. It is observed that 
both the Wald test and LR test are highly significant suggesting that the 
spatial Durbin model is the optimal model to explore the convergence 
characteristics of built-up land footprints in SSA countries. 

4.4.2. Spatial absolute β convergence 
The spatial absolute β convergence estimation results are provided in  

Table 4 based on the SEM, SAM, and SDM models. Given the superiority 
of the spatial Durbin model relative to the SEM and SAM, only the dis
cussion of the estimation results for the SDM is considered. Additionally, 
the coefficients of the first-lag of built-up land footprints are signifi
cantly negative in all three models, suggesting that there is strong evi
dence for the spatial absolute β convergence of built-up land footprints 
in SSA countries from 2000 to 2017. This implies that each country is 
able to converge to its respective steady states without any reference to 
other factors. In this case, a particular country would be facing signifi
cant pressure if surrounding countries met their projected built-up land 
footprint reduction targets. The absolute spatial convergence indicates 
that cutting built-up land footprints is faster in countries with the high 
initial built-up land footprints. However, in countries with lower initial 
footprints, the decrease of the built-up land footprint is slighter. 
Therefore, the annual decreasing rate in a specific country will also 
significantly affect the adjacent countries as the spatial spillover effects 
captured by ρ and λ are statistically significant. The higher absolute 
convergence rate in the SDM than in SAM and SEM indicates that the 
consideration of spillover effects from neighboring countries improves 
the convergence process of built-up land footprints. This is consistent 
with our preliminary tests reported in Table 4, suggesting that the SDM 
is more desirable. 

4.4.3. Spatial condition β convergence 
Table 5 presents the estimation results of the conditional conver

gence. The coefficient of the lagged dependent variable (β) is negative 
and statistically significant at a 1% level across all specifications. This 
confirms the existence of conditional β convergence of built-up land 
footprints after controlling for the key triggers of built-up land foot
prints. The result showed that the estimated convergence rates are 
higher than the absolute convergence rate reported in Table 5, although 
the saturated model with all the driving factors displayed in column 7 

Table 2 
Descriptive Statistics.  

Specific Indicator Scale Unit Source Mean Std. Dev. Min. Max. Obs. 

Per capita built-up land footprint gha per capita GFN  0.039  0.016  0.003  0.098  504 
Real GDP per capita Constant US dollar WDI  1.421.438  1.651.356  214.139  7.864  504 
Population density persons/km2 WDI  2.100  2.900  12000  1.908  504 
Urban population % of total population WDI  36.176  15.294  8.246  63  504 
Economic globalization Kof Index SEI  46.942  7.917  23.612  70.793  504 
Industrial structure Percent of GDP WDI  9.578  4.097  0.232  24.557  504 
Biocapacity gha per capita GFN  1.114  1.4014  0.283  9.097  504 

Note: gha stands for global hectares; GFN: Global Footprint Network database; WDI: World Development Indicators database; Std. Dev.: Standard Deviation; Min: 
Minimum; Max: Maximum; Obs: Observation. SEI: Swiss Economic Institutes. Spatial scale: Country-level analysis. Time period: annual data 2000 – 2017. 

Table 3 
Goodness of fit for selecting the weight matrix.  

W matrix R-squared AIC 

K nearest neighbor (KNN)     
k = 3  0.77  0.43 
k = 5  0.61  0.43 
k = 7  0.51  0.44 
k = 9  0.65  1.03 
Thiessen polygon  0.57  0.51 
KNN × Inverse distance     
Thiessen polygon × Inverse distance  0.63  0.62 

Note: AIC: Akaike Information criteria (lag selection process). W: row- 
standardized weight matrix 

Fig. 3. Global Moran’s I scatter plots of built-up land footprints in 2017.  

2 https://www.wabicc.org/ecowas-ministers-adopt-strategic-documents 
-for-a-cleaner-sustainable-environment/ 
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yields an estimated convergence rate relatively small. This is indicative 
that the control variables considered in our analysis are an important 
driving force of the convergence process of built-up land footprints in 
SSA countries. The effects of the control variables on the convergence 
process can be summarized as follows. 

(i) By comparing the contribution of each variable to the conver
gence of built-up land footprint, result showed that the estimated 
convergence rate associated with biocapacity (lnBio) is the 
highest relative to other explanatory variables. One implication is 
that the availability of biologically productive land in SSA 

countries has significantly accelerated the convergence rates of 
built-up land footprints by reducing the development of built-up 
land footprints in countries with initially higher levels of foot
prints. This is in line with the negative and coefficient of bio
capacity. For every increase in biocapacity by 1%, there is a 
significant reduction of the built-up land footprint by 0.216%. 
Thus, biocapacity conservation initiatives (such as protected 
areas, zero-deforestation, payment for ecosystem services) are 
essential to promote a sustainable built-up area development.  

(ii) It is found that both GDP (lnGDP) and squared GDP (lnGDP2) are 
positive and negative, respectively. These two coefficients are 

Fig. 4. Spatial distribution of per capita built-up land footprints in the SSA region.  
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statistically significant at a 1% level. This indicates that there is 
an inverted U-shaped nexus between economic growth and built- 
up land footprints. Interestingly, the evidence of environmental 
Kuznets curve hypothesis is validated for built-up land footprint 

as a measure of environmental pressure. Thus, built-up land 
footprints may decrease after a threshold level of per capita GDP, 
which corresponds to the peak of the built-up land footprint, is 
reached.  

(iii) Result also revealed that both population density (lnpop) and 
urbanization exert a positive and significant impact on built-up 
land footprints. It is well established that changes in a built-up 
area are the result of rapid population growth (Herrmann et al., 
2020; Tan et al., 2016). Empirical evidence further revealed that 
urbanization has a detrimental impact on the built-up environ
ment as it leads to the expansion of built-up land footprints. This 
finding is consistent with the compact city and environmental 
transition theories. These theories provide arguments in favor of 
urbanization’s role in stimulating resources and ecological 
depletion. They are based on the premise that increasing urban
ization leads to overcrowding, industrialization, and more 
transportation activities, resulting in severe ecological damages 
(Capello and Camagni, 2000; Poumanyvong and Kaneko, 2010). 

(iv) Another important finding is that globalization (lnglob) signifi
cantly drives up built-up land footprints in SSA countries. Glob
alization allows a large variety of foreign actors to intervene 
directly or indirectly into the continent’s urban land and built 
environment resulting in a significant imprint on the built-up 
landscape, especially with regard to changing land use and its 
environmental, ecological, and social consequences. This finding 
is in accordance with Amnon (2017), who found that current land 
market trends towards globalization are far from resulting in 
convergence among legal systems and constitute an important 
dilemma that land law faces. Again, the result revealed that in
dustrial structure (lnIndus) has not a significant effect on built-up 
land footprints. 

In order to show robust evidence of the above estimation results, 
series of sensitivity analyses are conducted by removing the urbaniza
tion and squared term of GDP over the sub-period 2008–2017. 
Furthermore, it is considered that the K= 5 nearest weight matrix. The 
results are displayed in Table 7. It is observed that the results remain 
statistically unchanged and are well signed, suggesting that the 
convergence observed in built-up land footprint is not driven by the 
choice of the weight matrix. Consistent with our previous results re
ported in Table 5, the per capita biocapacity has the largest impact on 
the convergence rate, although the magnitudes of the estimated 
convergence are slightly lower. 

5. Discussion of the findings 

In the current academic literature, the question of built-up land is 
generally mentioned in the side-lines. The built-up land footprint 
question, which is at the very basis of transformation in human well- 
being, water resources, and food security, is rarely fully explored or 
taken as a central point in ecological sustainability debates. In this study, 
there is examination of the dynamics of the SSA region built-up land 
footprint with particular attention to the potential drivers of the built-up 
land expansion for 28 SSA countries over the period 2000–2017. 

The highly significant global Moran’s I index suggests the existence 
of spatial clustering patterns in built-up land footprints. In the investi
gation, it is illustrated that built-up land footprints are not randomly 
distributed within the SSA region and display two tendencies: moderate 
built-up land footprints in Southern Africa and high built-up land foot
prints Western African countries. This provides a piece of strong evi
dence that the distribution of built-up land footprint is not random but 
follows a significant spatial pattern. The report of the result shows that 
the imitation of environmental policies leads to a parallel development 
of built-up land footprints among SSA countries. A key implication of 
this finding is that a proper spatial arrangement can produce significant 
influences on the development of the built-up area (Msuya et al., 2021; 

Fig. 5. Trends in standard deviations and Moran’s I indices for built-up land 
footprints in 28 SSA countries, 2000–2017. 

Table 4 
Moran’s I statistics for built-up land footprints.  

Period Z P-values Period Z P-value  

2000 0.277b  0.020  2009 0.155c  0.086  
2001 0.319a  0.001  2010 0.113c  0.095  
2002 0.215b  0.026  2011 0.120c  0.090  
2003 0.189c  0.055  2012 0.541a  0.000  
2004 0.136c  0.070  2013 0.240b  0.015  
2005 0.215b  0.045  2014 0.175c  0.062  
2006 0.207b  0.034  2015 0.167c  0.079  
2007 0.146c  0.070  2016 0.240b  0.034  
2008 0.385a  0.000  2017 0.177c  0.066 

Note: a, b and c represent significance level of 1%, 5%, and 10%, respectively 

Table 5 
Preliminary tests.  

Tests Statistics Tests Statistics 

LM test no spatial lag 68.956a Wald spatial lag test 36.875a 

Robust LM test no spatial lag 10.563a Wald spatial error test 33.905a 

LM test no spatial error 57.149a LR spatial lag test 22.965a 

Robust LM test no spatial error 9.875a LR spatial error test 19.278a 

Notes: a, b, and c indicate significant levels at 1%, 5%, and 10%, respectively. 

Table 6 
Regression results of the absolute spatial convergence.  

Variables Spatial autoregressive 
model 

Spatial error 
model 

Spatial Durbin 
Model 

β -0.110a -0.158a -0.261a  

(0.000) (0.000) (0.000) 
Convergence 

rate 
0.116 0.171 0.302 

ρ 0.225a  0.290a  

(0.000)  (0.000) 
λ  0.021a    

(0.000)  
W ∗ ln(zit− 1) -0.521a    

(0.000) 
Log-likelihood 830.3973 232.5963 835.3791 
Observation 504 504 504 

Notes: a, b, and c indicate significant levels at 1%, 5%, and 10%, respectively. The 
convergence rate (r) is computed as r = − ln(1 + β).  
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Tu, 2011). As reported by Anselin et al. (1996) and Rey (2001), ignoring 
this spatial structure may lead to wrong inferences. 

Based on the above finding, the spatial panel econometric techniques 
to investigate the spatial convergence features of built-up land footprints 
are employed. Accordingly, the investigation provides evidence for both 
spatial absolute and condition β convergence of built-up land footprints 
among SSA countries. One implication of this finding is that the differ
ences in built-up land footprints among twenty-eight SSA countries were 
gradually being narrowed, and the built-up land footprints of each 
country will converge to the same steady state. Therefore, instead of 
following independent paths, the SSA countries gravitate towards a 
similar standard of built-up land patterns. One implication of the 
convergence hypothesis is that countries with higher land footprints 
tend to rapidly reduce the built-up land footprints compared to countries 
with lower built-up land footprints. The catching-up effect of conver
gence indicates that countries with initially higher land footprints must 
implement strict built-up land regulations to reduce land footprints 
because of the inherent hardship of shrinking footprints. 

In contrast, countries with a low land footprint have more scope for 
allowing a reasonable development of their footprints. Interestingly, 
there is evidence that potential drivers of built-up land footprints in
crease the convergence rates relative to the convergence rate obtained 
from the absolute β convergence. Several previous studies of conver
gence have reached a similar conclusion (Hao and Peng, 2017; Yilanci 
et al., 2021). 

Among the control variables, there is statistical evidence that bio
capacity plays an important role in the convergence process, as it is 
associated with the highest rates of convergence of built-up land foot
prints. A key finding is that the availability of natural capital (bio
capacity) improves the built-up environment by reducing footprints. 
This implies that the spatial optimization of biocapacity is essential for 
better resource patterns that reduce built-up land footprints. Several 
authors have reached similar findings such as (Guo et al., 2017; Wack
ernagel, 2014; Yue et al., 2011). Another significant result is that 

Table 7 
Regression results of the spatial condition β convergence.  

Variable 1 2 3 4 5 6 7 

β -0.458a -0.369a -0.250a -0.310a -0.396a -0.382a -0.116c  

(0.000) (0.000) (0.001) (0.000) (0.000) (0.022) (0.077) 
Convergence rate 0.612 0.460 0.287 0.371 0.504 0.481 0.123 
lnBio -0.216a      -0.145b  

(0.000)      (0.041) 
lnGDP  0.125a     0.256a   

(0.000)     (0.000) 
lnGDP2  -1.937a     -1.204b   

(0.001)     (0.000) 
lnUrb   0.741a    0.314    

(0.010)    (0.637) 
lnpop    0.452a   0.336     

(0.001)   (0.227) 
lnIndus     1.089  0.965      

(0.422)  (0.336) 
lnglob      0.895a 0.729a       

(0.001) (0.000) 
W ∗ lnBio 0.035c      0.063c  

(0.052)      (0.078) 
W ∗ lnGDP  0.096a     0.321b   

(0.001)     (0.022) 
W ∗ lnpop    0.005c   0.001     

(0.097)   (0.123) 
ρ 0.331a 0.456a 0.385a 0.812a 0.327a 0.410a 0.363a  

(0.000) (0.050) (0.000) (0.000) (0.000) (0.000) (0.000) 
Log-likelihood 855.2452 961.3605 743.1590 801.9673 963.1250 896.3284 635.2201 
Observation 504 504 504 504 504 504 504 

Notes: a, b, and c indicate significant levels at 1%, 5%, and 10%, respectively. Notes: a, b, and c indicate significant levels at 1%, 5%, and 10%, respectively. The 
convergence rate (r) is computed as r = − ln(1 + β). Values in parentheses denote p-values. In order to save space, the coefficients of other variables including 
W ∗ lnUrb, W ∗ lnpop, W ∗ lnglob, W ∗ lnIndus; are not reported. These coefficients are not statistically significant at the conventional levels of significance.  

Table 8 
Regression results of the spatial condition β convergence with K = 5 nearest 
weight matrix over the sub-period 2008 – 2017.  

Variable SDM SDM SDM SDM SDM 

β -0.371a -0.201a -0.218a -0.335a -0.227a  

(0.000) (0.000) (0.000) (0.000) (0.022) 
Convergence rate 0.463 0.241 0.245 0.407 0.257 
lnBio -0.016a      

(0.000)     
lnGDP  0.010a      

(0.000)    
lnpop   0.191b      

(0.041)   
lnIndus    0.625      

(0.100)  
lnglob     0.045c      

(0.064) 
W ∗ lnBio 0.001a      

(0.002)     
W ∗ lnGDP  0.088a      

(0.001)    
W ∗ lnpop   0.001      

(0.197)   
ρ 0.224a 0.301c 0.307a 0.293a 0.291a  

(0.000) (0.077) (0.000) (0.000) (0.000) 
Log-likelihood 409.915 401.2101 441.0610 454.9591 428.0916 
Observation 280 280 280 280 280 

Notes: a, b, and c indicate significant levels at 1%, 5%, and 10%, respectively. 
Notes: a, b, and c indicate significant levels at 1%, 5%, and 10%, respectively. The 
convergence rate (r) is computed as r = − ln(1 + β). Values in parentheses 
denote p-values. In order to save space, the coefficients of other variables 
including W ∗ lnUrb, W ∗ lnpop, W ∗ lnglob, W ∗ lnIndus; are not reported. These 
coefficients are not statistically significant at the conventional levels of 
significance.  
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globalization increases pressures on the built-up environment and de
lays the convergence process. As reported by some analysts, globaliza
tion harms the built-up area by the channel of land grabbing 
phenomenon observed in many SSA countries over the past decades. 
Indeed, globalization has been demonstrated to be strictly connected 
with the land grabbing phenomenon observed in many SSA countries, 
which has severe consequences for natural capital availability 
(Coscieme et al., 2018; Niccolucci et al., 2021). Our analysis shows that 
a higher degree of globalization and the resulting associated interna
tional transactions of land are detrimental for the built-up environment. 

Because there is evidence for an inverted U-shaped nexus between 
built-up land footprints and per capita GDP, the increase in built-up land 
footprints may impede economic development in the SSA region. Due to 
the current level of economic development in many SSA countries, 
which is still considerably lower than the inflection points of the 
inverted U-shaped nexus, one may expect built-up land footprints to 
increase at least in the near future in the SSA countries. Since the process 
of the EKC does not take place immediately, the adoption of sustainable 
urban land management practices may result in a negative correlation 
between economic development and built-up resources. In the current 
literature, several studies have confirmed the EKC hypothesis for 
different environmental pollutants, such as CO2 emissions (Armeanu 
et al., 2018; Bilgili et al., 2021; Markandya et al., 2006), ecological 
footprint (Erdoğan et al., 2021; Kassouri, 2021b; Kassouri and Altıntaş, 
2020). Thus, the findings of this study open a new line of research 
regarding the examination of the EKC hypothesis based on different 
sub-components of ecological footprint. 

Regarding the limitation of our study, it is important to stress that the 
lack of small-scale spatial data remains one of the key shortcomings of 
our study. A granular analysis to capture within country variation in 
built-up land footprints is quite relevant to identify place specific factors 
shaping land-use efficiency and long-term environmental sustainability. 
However, the authors believe that results can be improved as these data 
sets are developed and disseminated for SSA countries. Unlike the split- 
sample approach used in Rey and Montouri (2010), our data cover 
relatively small countries over a short period 2000 – 2017, which pre
vents us to estimate the convergence pattern over different subperiods. 
However, sensitivity analysis was performed by removing the squared 
terms of GDP and urbanization over the sub-period 2008 – 2017 based 
on the K= 5 nearest weight matrix. Thus, the sensitivity test revealed 
that the previous results remain statistically unchanged. One key 
implication is that the convergence observed in built-up land footprint is 
not driven by the choice of the weight matrix and consistent across 
different sub-periods (2000 – 2017 & 2008 – 2017). 

6. Conclusion and policy implications 

Several factors, including climate change, rapid urbanization, soil 
erosion, and population growth, have considerably affected the dy
namics of built-up land footprints in Sub-Saharan African countries. In 
this study, the convergence characteristics of built-up land footprints in 
SSA countries is investigated over the period 2000–2017 by accounting 
for spatial effects. By utilizing spatial dependence to analyze the 
convergence process of built-up land footprints, and examining the 
drivers of the convergence, interesting results were revealed. Firstly, 
there is a significant spatial autocorrelation in the built-up land foot
prints of SSA countries. The implication is that ignoring this spatial 
structure may lead to wrong inferences. Secondly, the investigation 
found strong evidence for both spatial absolute and condition β 
convergence in BLF over the experimental period. This interprets that 
our data confirm the catching-up effect of convergence in built-up land 
footprint. Thirdly, the expansion of the biological capacity plays a sig
nificant role in accelerating the convergence rate as there is a negative 
impact of biocapacity on land footprints. Fourthly, besides the inclusion 
of globalization and urbanization, the employed STIRPAT model also 
revealed the effects of population density, GDP per capita, and the value- 

added of industry in GDP on the convergence process. Specifically, 
statistical evidence found that all of these factors contribute to the 
expansion of land footprints, except the industrial structure, which does 
not significantly affect built-up land footprints. 

6.1. Policy implications 

The result from this study as implied above offers policy direction to 
decision makers and other stakeholders in both the environmental and 
economic sectors. Therefore, the following are relevant policy inference. 

Spatial spillovers have played an important role in explaining built- 
up land trajectories in the SSA countries. More attention should be given 
to these countries because without rigorous ecological and environ
mental regulations the current pattern of built-up land footprints will 
not decrease in these countries but rather stay in self-reinforcing dy
namics through spatial spillovers. The mutual influence of built-up land 
footprints between the adjacent countries should be considered in the 
formulation of sustainable built-up land policies. 

Policymakers should set different built-up land targets according to 
locations. According to the spatial distribution characteristics, different 
trajectories of built-up land footprints and spatial autocorrelation pat
terns could help policymakers coordinate built-up and urban land re
forms as well as proposing appropriate built-up area development 
accordingly. 

Given the evidence of spatial convergence, one might suggest that 
narrowing the current level of built-up land footprint in countries with 
the relatively high footprint is more efficient as footprint intensity will 
decrease faster in these countries than in countries that have already cut 
built-up land footprints. Due to the existence of spatial spillover effects, 
the adjacent countries will benefit from the reduction of footprints. 

It is established that biocapacity has played an important role in 
cutting built-up land footprints in SSA countries. In this light, bio
capacity preservation policies (such as protected areas, payment of 
ecosystem services) should be encouraged through more targeted sus
tainable ecological policies. The government should coordinate its pol
icies, especially for the preservation of biocapacity. 

Lastly, there should be punitive actions against international in
vestors, particularly those in international land transactions that are not 
environmentally conscious, to reduce the consequences of globalization 
on the expansion of built-up land footprints. The current framework of 
globalization in the SSA countries is detrimental to the built-up 
environment. 

Although the estimation techniques and results are quite relevant 
and helpful to policymakers of other developing countries, the investi
gation could be replicated from different perspective. Future studies can 
investigate how land grabbing in SSA countries affects cross-national 
convergence of built-up land footprints which this study has not 
covered. The use of alternative analytical method(s) can also be 
considered as potential extension as observed in a related study of Jin 
et al. (2018) where 110 cities within the Yangtze River Economic Belt 
(YREB) were analyzed with the stochastic frontier analysis (SFA) and the 
use of the local indicators of spatial association (LISA) statistic. 

Data availability 

Data will be made available on request. 
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