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GENERALIZED SCHUR FUNCTIONS AS MULTIVALENT

FUNCTIONS

HENDRIK LUIT WIETSMA

Dedicated to Henk de Snoo on occasion of his 75th birthday.

Abstract. The multivalency approach to generalized Nevanlinna functions
established in [13] is here extended to the related class of generalized Schur
functions giving thereby rise to new characterizations for this class of functions
as well as a straightforward function-theoretical proof of its factorization. In
particular, this multivalency approach explains how the well-known factoriza-
tions of the two mentioned classes of functions differ from each other. Indeed,
by this approach a new factorization of generalized Schur functions is obtained
which is more directly connected to the factorization of generalized Nevanlinna
functions. These results demonstrate that multivalency is a valuable concept
for the complete understanding of the mentioned classes of functions.

1. Introduction

Generalized Schur functions were introduced as the characteristic functions of (max-
imal) isometric operators in Pontryagin spaces. A complex-valued function s mero-
morphic on (the unit disk) D is a generalized Schur function with index κ ∈ N0,
s ∈ Sκ for short, if its Schur kernel Ks, defined as

(1.1) Ks(z, w) =
1− s(z)s(w)∗

1− zw
,

has κ negative squares on D ∩D(s), where D(s) is the domain of holomorphy of s;
see [8] for details. Hereby S0 coincides with the well-known class of ordinary Schur
functions. In [8] it was shown that generalized Schur functions (even operator-
valued ones) possess a factorization, the so-called Krĕın-Langer factorization, by
means of their poles and zeros in- and outside the unit circle. Following is the
scalar version of that factorization; in it Bγ denotes a Blaschke factor:

(1.2) Bγ(z) =
z − γ

1− γz
, z ∈ D, γ ∈ D.

Theorem 1.1. ([8, Satz 3.2]) For every s ∈ Sκ there exist γ1, . . . , γκ ∈ D and an
ordinary Schur function s0 such that s =

∏κ
i=1(Bγi

)−1s0.

This factorization was obtained by relatively straightforward operator-theoretical
arguments from the (essentially operator-theoretical) definition of generalized Schur
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2 H.L. WIETSMA

functions in (1.1). Later it was attempted to use Theorem 1.1 to obtain the fol-
lowing analogous factorization result for the related class of generalized Nevanlinna
functions with index κ (Nκ), see e.g. [9] for their definition.

Theorem 1.2. For every f ∈ Nκ there exists a rational function r of degree κ and

an ordinary Nevanlinna function f0 such that f = rf0r
#. Here r#(z) = r(z).

The two mentioned classes can be connected by the biholomorphic mapping φ,

φ(z) =
z − i

z + i
,

mapping C+ onto D and C− onto Dc := {z ∈ C ∪ {∞} : |z| > 1}, in the following
manner: f ∈ Nκ if and only if there exists s ∈ Sκ such that for z ∈ C+

(1.3) f(z) = φ−1 ◦ s ◦ φ(z).

Despite this strong connection between the two classes of functions, it transpired
to be difficult to obtain the preceding factorization result for generalized Nevan-
linna functions (Theorem 1.2) straightforwardly from the factorization of general-
ized Schur functions (Theorem 1.1). Instead, the initial proofs for the factorization
for generalized Nevanlinna functions in the papers [3, 4] depended heavily on the
operator-theoretical results contained in [10]; cf. [14].

In [13] the observation was made that generalized Nevanlinna functions can also
be understood as meromorphic functions having a certain multivalency property,
see Theorem 4.2 below. In that manner a purely function-theoretical approach
to generalized Nevanlinna functions was developed yielding new characterizations
for them as well as facilitating the establishment of Theorem 1.2 by straightfor-
ward function-theoretical arguments. An additional advantage of this multivalency
approach to generalized Nevanlinna functions is that multivalency behaves very
regularly with respect to (1.3). Accordingly, a similar approach can also be applied
to generalized Schur functions; this is done in the present paper. In fact, the mul-
tivalency approach is even more suitable for treating generalized Schur functions
as their behavior at the boundary of their domain of holomorphy is of a simpler
nature than that of generalized Nevanlinna functions, cf. Corollary 3.4 below.

By this approach several new characterizations of ordinary and generalized Schur
functions in terms of multivalency are obtained. In particular, a purely function-
theoretical proof for Theorem 1.1 is obtained based on the open mapping theorem
(for holomorphic functions) and a weak form of the maximum modulus principle
for bounded holomorphic functions. The multivalency-approach also shows that
the presented factorizations, Theorem 1.1 and Theorem 1.2, are not equivalent
(with respect to (1.3)). This observation is complemented by the establishment of
an alternative factorization of generalized Schur functions, which explicitly reflects
the connection between the two classes of functions. From that alternative fac-
torization the presented factorization of generalized Nevanlinna functions is simply
established.

Finally, the contents of this paper are outlined. In Section 2 the present multiva-
lency approach is compared to the function-theoretical approach of [2]; herefore a
weak version of the maximum modulus principle and the Inner-Outer factorization
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ofHp-functions are recalled. After establishing basic properties of generalized Schur
functions in the first half of Section 3, valency, boundary behavior and factoriza-
tion characterizations of generalized Schur functions are established in this section’s
second half. In Section 4 the obtained results are compared with the valency char-
acterizations of generalized Nevanlinna functions in order to explain the difference
between their factorizations. That discussion is complemented by first establishing
an alternative factorization for generalized Schur functions and, thereafter, using
that new factorization to obtain the factorization result of generalized Nevanlinna
functions.

2. Weak maximum modulus principle and the Inner-Outer

factorization

Here first a weak version of the maximum modulus principle and the Inner-Outer
factorization are recalled. To formulate the former result recall that a function f
belongs to the class Hp, for 0 < p < ∞, if it is holomorphic on D and satisfies

sup
0≤r<1

∫ π

−π

|f(reiθ)|pdθ < ∞.

Moreover, H∞ denotes the class of bounded holomorphic functions in D:

sup
z∈D

|f(z)| < ∞.

For Hp-functions the following weak form of the maximum modulus principle holds;
hereby the notation →̂ denotes a non-tangential limit from inside the unit disk.

Proposition 2.1. Let f ∈ Hp, 0 < p ≤ ∞, and let M > 0. Then f is bounded in
absolute value on D by M if and only if limz→̂x |f(z)| ≤ M for almost all x ∈ T.

Proposition 2.1 can in the H∞-case be found in [12, Theorem 11.32]; that is the
only case of Proposition 2.1 needed in this paper. From that special case the general
case follows by making use of [12, Theorem 17.18]. In fact, Privalov’s uniqueness
theorem implies that the preceding statement holds for all analytic functions.

Next the Inner-Outer factorization of Hp-functions is stated. Recall therefore that
the class of the functions of bounded type on D, B, consists of functions mero-
morphic on D representable as the quotient of H∞-functions. In particular, R.
and F. Nevanlinna showed that the class of functions of bounded type which are
holomorphic on D coincides with the class of functions of bounded characteristic.
Consequently, B contains all Hp-classes.

Theorem 2.2. (Inner-Outer factorization) For every f ∈ B there exist mutually
prime Blaschke products B0 and B∞, c ∈ R and positive measures dσ+ and dσ−

on (−π, π] with disjoint supports singular w.r.t. the Lebesgue measure such that

f(z) =
B0(z)

B∞(z)
eice

1
2π

∫
π

−π

eiθ+z

eiθ−z
[dσ+(θ)−dσ

−
(θ)]

e
1
2π

∫
π

−π

eiθ+z

eiθ−z
log |f(eiθ)|dθ

;

here log |f(eiθ)| := limz→̂eiθ log |f(z)| exists for almost all θ ∈ (−π, π]. If f ∈ Hp,
where 0 < p ≤ ∞, then the representation holds with B∞ ≡ 1 and dσ+ ≡ 0.

Here Blaschke products are (possibly infinite) products of Blaschke factors as in
(1.2).
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Despite not being a central concern of this paper, it is an interesting observa-
tion that the weak maximum moduls principle and the Inner-Outer factorization
are equivalent, see Appendix A. This equivalence is of interest, because it shows
how the current multivalency approach (which is connected to the behavior of
the function at the boundary of the domain of holomorphy) is connected to the
Inner-Outer factorization approach of Delsarte, Genin and Kamp in [2]. Although
initially overlooked, their interesting paper contains a function-theoretical proof for
the factorization of a class of functions which can, with some effort, be shown to be
equal to the class of generalized Caratheodory functions. As the class of generalized
Caratheodory functions behaves essentially in the same way as generalized Nevan-
linna functions, their result would also imply the factorization result Theorem 1.2.

More specifically, in [2] the classes of pseudo-Schur and pseudo-Caratheodory func-
tions were introduced. The former class consist of all functions s of bounded type
(B) satisfying limz→̂x |s(z)| ≤ 1, for almost all x ∈ T. The Inner-Outer factorization
implies that a pseudo-Schur function s can be factorized as susb, where

sb(z) = B0(z)e
ice

− 1
2π

∫
π

−π

eiθ+z

eiθ−z
dσ

−
(θ)

e
1
2π

∫
π

−π

eiθ+z

eiθ−z
log |s(eiθ)|dθ

;

su(z) = (B∞(z))−1e
1
2π

∫
π

−π
eiθ+z

eiθ−z
dσ+(θ)

.

The assumed boundary behavior of pseudo-Schur functions implies that sb is an
ordinary Schur function. Consequently, in light of Theorem 1.1, a pseudo-Schur
function s is a generalized Schur function if and only if su is a rational function.
To describe this subclass of pseudo-Schur functions Delsarte, Genin and Kamp in-
troduce the concept of an index. That concept is introduced both for pseudo-Schur
functions as well as for pseudo-Caratheodory functions.

In other words, the results in [2] imply that the class of generalized Schur functions
(and, similarly, the classes of generalized Caratheodory or Nevanlinna functions)
can be described via their (non-tangential) boundary behavior together with an
additional index condition. Our multivalency approach can be understood as con-
sisting of a combination of those two conditions into one valency condition on the
function under consideration.

3. Generalized Schur functions

For a complex-valued function f , any subset ∆ of C and any subset A of C∪ {∞},
the notation V (f,∆, A) = κ (or V (f,∆, A) ≤ κ) is used to denote that for every
fixed w ∈ A the multiplicities of the zeros of f(z)−w on ∆ ∩D(f) add up exactly
(or add up at most) to κ ∈ N0. Hereby V (f,∆,∞) = κ and V (f,∆,∞) ≤ κ mean
that V (1/f,∆, 0) = κ and V (1/f,∆, 0) ≤ κ, respectively. In this paper, ∆ will
almost without exception be D and A will generally be (a subset of) Dc:

D
c := {z ∈ C ∪ {∞} : |z| > 1}.

Before proving characterizations of generalized Schur functions, two properties of
generalized Schur functions following from their definition as in (1.1) are established.

Lemma 3.1. Let s ∈ Sκ. Then the following statements hold:

(i) V (s,D,Dc) ≤ κ;
(ii) lim supD∋z→x |s(x)| ≤ 1 for all but at most κ points x of T.
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Note that generalized Schur functions can easily be proven to be of bounded type
as a consequence of property (i) in Lemma 3.1.

Proof. (i): Assume that V (s,∆, w0) = κ0 ∈ N for any w0 ∈ D
c \ {∞} and any

open subset ∆ of D, then, by definition, there exist distinct zeros z1, . . . , zn ∈ ∆ of
s − w0 having multiplicities π1, . . . , πn such that

∑n
i=1 πi = κ0. Now let r > 0 be

such that for 1 ≤ i ≤ n there exist open sets Ui such that

(a) Ui := {z ∈ C : |z − zi| < r} is contained in ∆ ∩ D(s);
(b) s′ is not zero on Ui \ {zi};
(c) Ui ∩ Uj = ∅, if i 6= j.

Then by the open mapping theorem there exists a non-empty open subset A of⋂n
i=1 s(Ui) such that s takes each value of A precisely κ0 =

∑n
i=1 πi-times (count-

ing multiplicities) on an open subset U of
⋃n

i=1 Ui (i.e., V (s, U,A) = κ0), see e.g.
[13, Corollary 2.2]. Note that A contains w0, as s(zi) = w0 for i = 1, . . . , n, and
that U ⊆ ∆ as Ui ⊆ ∆ for i = 1, . . . , n.

Property (b) guarantees that the multiplicities of the zeros of s − w1 are one for
any w1 ∈ A \ {w0}. As V (s, U, w1) = κ0 by the above construction of the sets U
and A, there exists κ0 distinct elements z1, . . . , zκ0

in U such that s(zi) = w1. The
Schur kernel Ks of s, see (1.1), has at these points the following expression:

(3.1) (Ks(zi, zj))i,j=1,...,κ0
= (1− w1w1)

(
1

1− zizj

)

i,j=1,...,κ0

.

That is, the Schur kernel evaluated at z1, . . . , zκ0
coincides with a negative con-

stant, 1− |w1|2, times the Szegö kernel evaluated at those points. Since the latter
kernel is seen to be positive definite by a series development of (1 − ζξ)−1, (3.1)
implies that κ0 ≤ κ, because s ∈ Sκ, cf. (1.1). Since w0 ∈ Dc \ {∞} and ∆ ⊆ D

were arbitrary, we have proven that V (s,D, w0) ≤ κ for every w0 ∈ Dc \ {∞}.

Finally, if V (s,D,∞) > κ, then V (s−1,D, 0) > κ and, hence, by the open mapping
theorem there exists a neighborhood A of 0 such that V (s−1,D, A) > κ; in contra-
diction to the proven fact that V (s,D, w0) ≤ κ for every w0 ∈ Dc \ {∞}.

(ii): Let x1, . . . , xn be distinct points of T for which there exist sequences {zi,k}k∈N

in D ∩ D(s) such that limk→∞ zi,k = xi and limk→∞ |s(zi,k)| > 1, for i = 1, . . . , n.
Then consider

(Ks(zi,k, zj,k))i,j=1,...,n =

(
1− s(zi,k)s(zj,k)

1− zi,kzj,k

)

i,j=1,...,n

.

As k tends to infinity the diagonal elements tend to minus infinity while the off-
diagonal elements are bounded. Thus (ii) holds, because by assumption the index
of s is κ, cf. (1.1). �

As the second and final preparation, the following characterizations of ordinary
Schur functions are needed.

Theorem 3.2. Let s be meromorphic on D. Then equivalent are:

(i) s ∈ S0;
(ii) V (s,D,Dc) = 0;
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(iii) s ∈ Hp, 0 < p ≤ ∞, and limz→̂x |s(z)| ≤ 1 for almost all x ∈ T.

Proof. The equivalence between (i) and (ii) (the latter condition usually being
formulated as |s| ≤ 1 on D) is well known, see e.g. [1, Chapter 4: Theorem 2.1],
and the equivalence between (ii) and (iii) follows directly from Proposition 2.1. �

Note that if the condition s ∈ Hp in Theorem 3.2 (iii) is replaced by the stronger
condition s ∈ H∞, which is the version of Theorem 3.2 needed in Theorem 3.3
below, then Proposition 2.1 needs only be used in case that s ∈ H∞. That case
can be established by a simple argument.

The obtained results are now combined to furnish characterizations of generalized
Schur functions. Recall that in the following theorem the notation Bγ denotes the
(scalar) Blaschke function in (1.2).

Theorem 3.3. Let s be meromorphic on D. Then equivalent are:

(i) s ∈ Sκ;
(ii) V (s,D,Dc) = κ;
(iii) (a) there exists w ∈ Dc such that V (s,D, w) = κ;

(b) lim sup
D∋z→x |s(z)| ≤ 1 for all x ∈ T;

(iv) there exists s0 ∈ S0 and γ1, . . . , γκ ∈ D, with s0(γi) 6= 0, such that

s =

(
κ∏

i=1

B−1
γi

)
s0;

(v) (a) there exists an open set A of Dc such that V (s,D, A) = κ;
(b) limz→̂x |s(z)| ≤ 1 for almost all x ∈ T.

Proof. (ii) ⇔ (iii): Necessity of the conditions is a consequence of the open map-
ping theorem, while the sufficiency can be established by the argument used in [13,
Corollary 2.4].

(ii), (iii) ⇒ (v): This is obvious.

(v) ⇒ (iv): Assume first that (v) holds with ∞ ∈ A, then (v)(a) implies that
{γ1, . . . , γκ} = s−1(∞) ∩ D is such that s0 := (

∏κ
i=1 Bγi

)s is holomorphic on D,
is bounded on D, satisfies s0(γi) 6= 0 and has the property (v)(b). Consequently,
Theorem 3.2 implies that s0 ∈ S0 and, hence, (iv) holds.

Next assume that (v) holds with ∞ /∈ A. Then consider sα := φ−1/α(s) for any
α ∈ A; here the notation φα denotes the following automorphism of the unit circle:

φα(z) =
z + α

1 + αz
, z, α ∈ D.

The function sα has by construction property (v)(a) for an open subset Aα con-
taining ∞ and, evidently, also has property (v)(b). Hence, V (sα,D,D

c) = κ by the
proven implications. Since s = φ1/α(sα), one now easily sees that V (s,D,Dc) = κ
and, hence, (iv) holds by the arguments in the first paragraph.

(iv) ⇒ (iii): If (iv) holds, then it is evident that (iii) holds with w = ∞.
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(i) ⇒ (iv): Since V (s,D,Dc) ≤ κ by Lemma 3.1 (i), κ0 defined as

(3.2) κ0 := sup
w∈Dc

V (s,D, w)

is well-defined, κ0 ≤ κ and there exists w0 ∈ Dc such that V (s,D, w0) = κ0. Thus
there exists an open neighborhood A of w0 in Dc such that V (s,D, A) = κ0 by the
open mapping theorem, cf. [13, Corollary 2.2]. Since Lemma 3.1 (ii) implies that
s has the property (v)(b), the established equivalence of (iv) and (v) shows that
there exist γ1, . . . , γκ0

∈ D such that s0(γi) 6= 0 and s = (
∏κ0

i=1 B
−1
γi

)s0.

Next recall that if s1 ∈ Sκ1
and s2 ∈ Sκ2

, then the straightforwardly established,
and well-known, Schur-kernel identity

(3.3) Ks1s2(z, w) = Ks1(z, w) + s1(z)Ks2(z, w)s1(w)
∗,

implies that s1s2 ∈ Sκp
where κp ≤ κ1 + κ2. Since it is easily established that

B−1
γ ∈ S1 for every γ ∈ D, repeatedly using the preceding observation yields that

the index of s = (
∏κ0

i=1 B
−1
γi

)s0 (assumed to be κ) is smaller than κ0. Since κ0 ≤ κ
by definition of κ0, see (3.2), the implication (i) ⇒ (iv) has now been established.

(iv) ⇒ (i): If s is as in (iv), then the argument surrounding (3.3) yields that
s ∈ Sκ0

, where κ0 ≤ κ. Thus V (s,D,Dc) = κ0 by the proven implication (i) ⇒
(iv) together with the established equivalence (iv) ⇔ (ii). On the other hand, the
proven equivalence (iv) ⇔ (ii) yields that V (s,D,Dc) = κ. Accordingly, κ0 = κ
and, hence, the implication is established. �

As a consequence of the preceding theorem, the class of all generalized Schur func-
tions is characterizable in terms of their boundary behavior, cf. Proposition 2.1.
Different from the characterization of generalized Nevanlinna functions in terms
of their boundary behavior, see [6] and [11, p. 5], the following characterization
of generalized Schur functions reflects that the behavior at the boundary is not
contributing to the negative index of the function.

Corollary 3.4. Let s be a function meromorphic on D. Then s ∈ Sκ for some
κ ∈ N0 if and only if lim supD∋z→x |s(z)| ≤ 1 for every x ∈ T.

Proof. Necessity of the condition is obvious by Theorem 3.3. Next suppose that s
has the stated boundary behavior, but that s 6∈ Sκ for any κ ∈ N0 and let w0 ∈ Dc

be arbitrary. Then the equivalence of (i) and (iii) in Theorem 3.3 implies that there
exists an infinite sequence {zi}i∈N, zi ∈ D, of points such that s(zi) = w0. Clearly,
the sequence has an accumulation point in D∪T. On the one hand, it cannot have
an accumulation point in T, because then the limit of |s(z)| along that subsequence
would be |w0| > 1; in contradiction with the assumed boundary behavior of s. On
the other hand, it also can not have any accumulation point in T, because then it
would be identically equal to w0 and, hence, generate the same contradiction as in
the preceding case. Thus V (s,D, w0) < ∞ and, hence, s ∈ Sκ for some κ ∈ N0 by
Theorem 3.3. �

4. Connection between the factorizations of generalized Schur

functions and generalized Nevanlinna fuctions

By means of the established multivalency characterization of generalized Schur
functions it is now possible to explain how the factorizations of generalized Schur
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and generalized Nevanlinna functions differs from each other. Therefore recall that
generalized Schur and Nevanlinna functions can be characterized in terms of mul-
tivalency as follows.

Theorem 4.1. Let s be meromorphic on D and let κ ∈ N0. Then s ∈ Sκ if and
only if V (s,D,Dc) = κ.

Theorem 4.2. ([13, Theorem 1.1]) Let f be a symmetric function meromorphic
on C \ R and let κ ∈ N0. Then f ∈ Nκ if and only if V (f,C+,C−) = κ.

Different from their respective factorizations, the equivalence of the preceding the-
orems is a direct consequence of the elementary observation expressed by (1.3).

The factorizations of generalized Schur functions and generalized Nevanlinna func-
tions have a similar structure: A generalized Schur function is factorized as the
product of a symmetric rational function with an ordinary Schur function and a
generalized Nevanlinna functions as the product of a symmetric rational function
with an ordinary Nevanlinna function, see Theorems 1.1 and 1.2, respectively. How-
ever, Theorems 4.1 and 4.2 show that the valency of generalized Schur functions
and generalized Nevanlinna is very different for the value ∞: In the case of a
generalized Schur function s there exists an open neighborhood A of ∞ such that
V (s,D, A) is constant, while for a generalized Nevanlinna function f there does not
in general exists an open neighborhood A of ∞ such that V (f,C+, A) is constant.
In other words, the poles of generalized Schur functions are isolated while those of
generalized Nevanlinna functions need not be. As the factorizations are made with
respect to the value ∞, their structure most inevitably differ from each other.

The preceding difference explains why the factorization of generalized Schur func-
tions is easily established (see e.g. the proof of the implication (v) ⇒ (iv) in Theo-
rem 3.3), while the factorization of generalized Nevanlinna function is more difficult
to establish. This difference is also reflected by the invariant subspace property for
contractive operators in Pontryagin spaces, by means of which generalized Schur
functions are realized, being easily established, while the same invariant subspace
property for selfadjoint relations in Pontryagin spaces, by means of which gener-
alized Nevanlinna functions are realized, being more involved to established; cf. [14].

The preceding discussion shows that the factorization of generalized Nevanlinna
functions, i.e. Theorem 1.2, cannot be expected to be straightforwardly derivable
from the seemingly similar factorization of generalized Schur functions contained
in Theorem 1.1. Indeed, a factorization for generalized Schur functions equivalent
(from the perspective of (1.3)) to the factorization for generalized Nevanlinna func-
tions contained in Theorem 1.2 would be a factorization not with respect to the
value ∞ ∈ D

c, because for that value there always exists an open neighborhood A
such that V (s,D, A) is constant for every generalized Schur funtion s. Instead, it
would be a factorization with respect to a value from T; for such a value the preced-
ing valency statement does not in general hold. Such a factorization is contained
in the following statement.

Proposition 4.3. Let s ∈ Sκ and let φ be as in (1.3). Then there exists a rational
function r of degree κ with poles in D and zeros in D ∪ T, and f0 ∈ N0 such that

s(z) = 1 + ir(z)r(1/z)f0(φ
−1(z)), z ∈ D.
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Proof. If s ∈ S0, then Re (s− 1) < 0 on D. Consequently, Im (−i(s− 1)) > 0 on D

and, hence, there exists f0 ∈ N0 such that −i(s− 1) = f0 ◦ φ−1. This shows that
the statement holds in this case. Next assume that s ∈ Sκ, with κ 6= 0, and define

(4.1) sc(z) := s(z)− c, z ∈ D and c ∈ (1, 2].

By construction of sc there exists open neighborhoods A∞ and A0 of ∞ and 0
in C ∪ {∞}, respectively, such that V (sc,D, A∞) = κ and V (sc,D, A0) = κ, see
Theorem 4.1. The former equality implies that there exists a function q(z) =∏κ

k=1(z − pk), where pk ∈ D, such that qsc ∈ H∞, cf. Theorem 1.2. And the
latter equality means that sc has zeros of total multiplicity κ in D. Let pc(q) =∏κ

k=1(z−nc
k), where n

c
1, . . . , n

c
κ denote the zeros of sc in D. Then one can factorize

sc as:

(4.2) sc(z) = irc(z)rc(1/z)fc(z),

where

rc(z) :=
pc(z)

q(z)
and fc(z) :=

1

i

q(1/z)q(z)sc(z)

pc(1/z)pc(z)
.

Since the zeros of pc and q are contained in D, the function q(1/z)/pc(1/z) is
bounded on D. As qsc ∈ H∞ by construction and pc contains the zeros of sc,
the function fc(z) is bounded on D for every c ∈ (1, 2]. Since we have that

limz→̂x rc(z)rc(1/z) > 0 for all x ∈ T and limz→̂x Re (sc) < 0 (cf. Theorem 3.3
(v)(b) and (4.1)), (4.2) shows that limz→̂x Im fc(z) > 0 for almost all x ∈ T. Con-
sequently, fc ◦ φ ∈ N0 by [14, Proposition 3.2] for every c ∈ (1, 2].

Finally, let {cl}, cl ∈ (1, 2] be a sequence converging to 1 such that ncl
k converges

to some element nk ∈ D ∪ T for k = 1, . . . , κ. Moreover, let z0 ∈ D be such that
s(z0) = 10, then sc(z) and (rc(z)rc(1/z))

−1 are evidently bounded at z0 for all
c ∈ (1, 2]. Hence, fc(z) is uniformly bounded at z0 for all c ∈ (1, 2]. Accordingly,
there exists by [5, Lemma 3 on p. 32] a subsequence {clk}k∈N of {cl}l∈N such
that fclk ◦ φ converges to some ordinary Nevanlinna function f0 as k tends to

∞. Therefore the statement holds by taking the limit in (4.2) along the sequence
{clk}. �

Proof of Theorem 1.2 via the factorization of generalized Schur functions: Let f ∈
Nκ be arbitrary with κ 6= 0, because otherwise there is nothing to prove. In that
case there exists s ∈ Sκ, κ 6= 0, such that

(4.3) f(z) = i
1 + s (φ(z))

1− s (φ(z))
, φ(z) =

z − i

z + i
.

see (1.3). By Proposition 4.3 (applied to s and −s) there exists rational functions
r+ and r− of degree κ and ordinary Nevanlinna functions f+ and f− such that

s(z) = 1+ir+(z)r+(1/z)f+(φ
−1(z)) and s(z) = −1−ir−(z)r−(1/z)f−(φ

−1(z)).

Plugging the preceding expressions into (4.3) yields

f(z) = i−ir
−
(φ(z))r

−
(1/φ(z))f

−
(z)

−ir+(φ(z))r+(1/φ(z))f+(z)
= r

−
(φ(z))r

−
(1/φ(z))

r+(φ(z))r+(1/φ(z))

if
−
(z)

f+(z) =
r
−
(φ(z))r#

−

(φ(z))

r+(φ(z))r#
+
(φ(z))

if
−
(z)

f+(z) .

As r+ and r− have the same poles (see the proof of Proposition 4.3),

r :=
r− ◦ φ

r+ ◦ φ
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is a rational function of degree at most κ. Under the assumption that if−/f+ is an
ordinary Nevanlinna function, [3, (3.14)] implies that the degree of r should also
be at least κ (since f ∈ Nκ). Consequently, Theorem 1.2 is established when it has
been shown that if−/f+ ∈ N0. As if−/f+ = f/rr# and f ∈ Nκ, [3, (3.14)] implies
that if−/f+ is a generalized Nevanlinna function. Therefore s defined as

s :=

if
−
(φ−1(z))

f+(φ−1(z)) − i

if
−
(φ−1(z))

f+(φ−1(z)) + i
=

if−(φ
−1(z))− if+(φ

−1(z))

if−(φ−1(z)) + if+(φ−1(z))
=

f−(φ
−1(z))− f+(φ

−1(z))

f−(φ−1(z)) + f+(φ−1(z))
,

is a generalized Schur function, see (1.3). As f+ and f− are ordinary Nevanlinna
functions, the equation f−(z) = −f+(z) has a solution in C+ if and only if f− and
f+ are constant on C+: f+ = −f− = c ∈ R. Accordingly, either s has no poles in
D or f+ = −f− = c ∈ R on C+. In the latter case, −if−/f+ = i on C+ and, hence,
−f−/f+ ∈ N0. In the former case, s ∈ S0 and, hence, if−/f+ = φ−1 ◦ s ◦ φ ∈
N0. �

Appendix A

Here the weak form of the maximum modulus principle, Proposition 2.1, and the
Inner-Outer factorization, Theorem 2.2, are shown to imply each other. To do so
the class of (ordinary) Caratheodory functions on D, C is used. This class, which
consists of functions holomorphic on D whose real part is nonnegative, is closely
related to the classes of ordinary Schur and Nevanlinna functions. The following
properties of this class are needed, see e.g. [5].

Theorem A.1. A function f belongs to the class of Caratheodory functions on
D, f ∈ C, if and only if there exists a real constant c and a finite positive Borel
measure dσ defined on (−π, π] such that

f(z) = ic+
1

2π

∫ π

−π

eiθ + z

eiθ − z
dσ(θ).

Moreover, if f ∈ C has the above representation, then

lim
z→̂eiθ

Re f(z) = σ′(θ).

In particular, limz→̂eiθ Re f(z) exists for almost all θ ∈ (−π, π].

Proof of the Inner-Outer factorization by means of Proposition 2.1. Case f ∈ H∞:

By [12, Theorem 17.9] there exists a Blaschke product B0 containing all zeros of
f (in D) such that f/B0 ∈ H∞ and, evidently, there exists M > 1 such that
|f/(B0M)| ≤ 1 on D. Since f/(B0M) is by construction bounded in absolute value
by one and zero free, − log(f/(B0M)) ∈ C. Thus, in light of the Lebesgue decom-
position theorem, there exists by Theorem A.1 a finite positive singular measure
dσ− on (−π, π] and a real constant d such that

− log

(
f(z)

MB0(z)

)
= id+

1

2π

∫ π

−π

eiθ + z

eiθ − z

[
dσ−(θ) + log

∣∣∣∣
f(eiθ)

B0(eiθ)M

∣∣∣∣dθ
]
.

The preceding equality implies that the statement holds in this case (with c = −d),

because a direct calculation yields that log(M) = 1
2π

∫ π

−π
eiθ+z
eiθ−z log(M)dθ and, evi-

dently, |B0(x)| = 1 for almost all x ∈ T.



GENERALIZED SCHUR FUNCTIONS AS MULTIVALENT FUNCTIONS 11

Case f ∈ B: In light of the mentioned characterization of B-functions as the quo-
tient of H∞-functions, this case follows immediately from the established one.

Case f ∈ Hp: As a consequence of [12, Theorem 17.9] one may without loss of
generality assume that f is zero-free (in D). Then the assumption f ∈ Hp implies
via the inequality between the arithmetic and geometric means that

sup
0≤r<1

∫ π

−π

max{log |f(reiθ)|, 0}dθ < ∞,

see e.g. [7, p. 76]. Hence, if f ∈ Hp, then hf , defined as

hf (z) =
1

2π

∫ π

−π

eiθ + z

eiθ − z
max{log |f(eiθ)|, 0}dθ,

is a well-defined Caratheodory function, see Theorem A.1. Thus f+ := e−hf is
bounded in norm by 1 on D. Consequently, ff+ ∈ Hp and, by construction,

lim
z→̂x

|f(z)f+(z)| ≤ 1, for almost all x ∈ T.

Therefore Proposition 2.1 yields that ff+ is uniformly bounded in norm by 1 and,
hence, the statement holds by the established representation of H∞-functions. �

Proof of Proposition 2.1 via the Theorem 2.2: Necessity of the condition in Propo-
sition 2.1 is obvious and, without loss of generality, sufficiency is only proven in case
M = 1. In that case Theorem 2.2 guarantees the existence of a Blaschke product
B0, a c ∈ R and a singular positive measure dσ such that

(A.1) f(z) = B0(z)e
ice−h(z), h(z) :=

1

2π

∫ π

−π

eiθ + z

eiθ − z
[dσ(θ) − log |f(eiθ)|dθ].

It is well known that the Blaschke product B0 is bounded in norm by 1 on D. More-
over, the assumption on the boundary values implies that log |f(x)| is a nonpositive
function a.e. on T and, hence, h ∈ C by Theorem A.1. Hence, |e−h(z)| ≤ 1 on D.
Thus the factorization of f in (A.1) yields that |f | is bounded by 1 on D. �
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[8] M.G. Krĕın and H. Langer, “Über die verallgemeinerten Resolventen und die charakteristiche
Funktion eines isometrischen Operators im Raume Πκ”, Colloquia Math. Soc. J. Bolyai 5.

Hilbert space operators and operator algebras, Tihany (Hungary), (1970), 353–399.
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