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Highlights 

 PCB assembly shop scheduling problem has many challenging characteristics. 

 A hierarchical approach is developed to decompose the original problem. 

 The sub-problems include job sequencing and lot scheduling with lot sizing. 

 A two-stage ant colony algorithm with lot sizing is proposed to evolve best results.  

 
 
  



 

A two-stage ant colony algorithm for hybrid flow shop 
scheduling with lot sizing and calendar constraints in 
printed circuit board assembly 
Abstract: This paper investigates a multi-stage hybrid flow shop scheduling problem 
with challenging characteristics including lot sizing, calendar constraints and 
sequence-dependent setup times in a real-world printed circuit board (PCB) assembly 
shop. Besides, other characteristics such as unrelated parallel machines and stage 
skipping also complicate the problem. Such features make the scheduling problem 
very difficult to find an optimal or near optimal solution. To reduce the complexity of 
such a PCB scheduling problem, this study develops a hierarchical approach which 
decomposes the original problem into two highly coupled sub-problems including job 
sequencing and lot scheduling with lot sizing, and further proposes a two-stage ant 
colony algorithm with lot sizing to evolve best results in the makespan performance. 
Extensive computational experiments have been conducted to illustrate the superiority 
of the algorithm in terms of computational time and stability. 
Keywords: hybrid flow shop; PCB assembly shop scheduling; ant colony algorithm; 
lot sizing 
 

1 Introduction 
Printed circuit boards (PCBs) have been widely used as components for 
electrical/electronic devices (Noroozi and Mokhtari, 2015). In the past ten years, 
Mainland China has become the largest manufacturing region of PCBs in the world 
(Yang, 2018). However, most of the PCB manufacturers are facing the challenge of 
improving the production efficiency in order to cope with the fierce competition. 
Therefore, motivated by a real-life problem in a semiconductor enterprise in Suzhou, 



this study aims to examine the scheduling decision so as to enhance resource 
utilization, reduce lead times and subsequently improve production efficiency.  

PCB assembly is the process of placing electronic components (resistors, 
capacitors, transistors, integrated circuits, etc.) of different shapes and sizes at pre-
specified locations on a bare board (Castellani et al. 2019). According to the 
definition of operations scheduling, the PCB assembly process in this factory can be 
viewed as a hybrid flow shop (HFS) scheduling problem, also considered as a flexible 
flow line or a flow shop with multiple machines on some/all production stages. 
According to the classic definition of HHS, the machines of each stage are unrelated 
and in parallel, which means that a job can be processed on any of those machines and 
the processing times at each stage are different. The flow of jobs through the HFS is 
unidirectional. Each job is processed by one machine at each stage and it must go 
through all stages (Linn and Zhang, 1999). 

Different from an ordinary HFS, some characteristics in our case in PCB 
assembly shops significantly substantiated the complexity of the scheduling problem. 
The distinctive features are summarized as follows:  

(1) Lot sizing. Considering the machine setup times which are required between 
processing of different PCBs, the orders are always split into a small number of 
batches. PCBs are produced in batches in order to enhance the utilization of machines 
and assembly lines. Each batch consists of identical PCBs with the same due date. All 
batches within the same order have the same sequence of stations to visit since the 
PCBs have the same route. Each batch of one PCB type is processed without 
stopping, that is, it cannot be preempted by another PCB type until the batch is 
completed. 

(2) Calendar constraints. The calendar is a tool to set the work shifts of all 
machines. The work shift is a segment of continuous available times of a machine. In 
the investigated PCB assembly shop, this means the machines such as screen printers, 
refold machines, inspection equipment, and also different types of placement 
machines are available only during working times in the calendar. 



(3) Setup times/process time/stage skipping. Besides, the setup times for the 
jobs depend on sequences of PCBs to be processed, whereas the machines at each 
stage are unrelated, i.e., the processing times for different machines to complete the 
same batch are different. The stage skipping is also allowed because not all jobs are 
required to go through all stages.  

To our best knowledge, these factors, such as lot sizing, calendar constraints and 
sequence dependent setup times are generally considered separately. In a hybrid flow 
shop environment, lot sizing has been considered to enhance the production efficiency 
or reduce energy costs (Chen et al. 2018; Meng et al. 2018; Zohali et al. 2019). 
Similarly, hybrid flow shop scheduling with unavailability constraints has attracted 
the attention of a lot of researchers (Shoaardebili and Fattahi, 2015; Bozorgirad and 
Logendran, 2016; Cui et al. 2016). Besides, hybrid flow shop scheduling with 
sequence dependent setup times is a very important research field and many research 
papers have been published (Hatami et al. 2015; Xu et al. 2017; Pan et al. 2017). 
However, few researchers discussed the combination of these factors in one model. 
The purpose of this paper is to formulate the problem that considers practical 
conditions and constraints, and to develop a solution procedure that provides good 
results. The practical use of scheduling technique for this type of problem is still rare 
(Arora and Agarwal, 2016; Rossit et al. 2018; Lee and Loong, 2019). 

This study is an attempt to narrow the gaps between theoretical development and 
industrial practices in such a complicated PCB assembly scheduling problem by 
taking into account the above-mentioned operational characteristics jointly in one 
model. The remainder of this paper is organized as follows. In Section 2, we present a 
brief literature review. In Section 3, we provide the description and formulation of the 
investigated scheduling problem. Section 4 describes the basic ant colony algorithm 
and summarizes the process of formulation and the main characteristics of the 
proposed algorithm. Section 5 presents the outcomes of the experiment study. Finally, 
some concluding remarks are given in Section 6. 



2 Literature review 
The PCB scheduling problem considered in this paper can be described based on the 
literature along the following areas: (1) PCB assembly shop scheduling; (2) 
scheduling with lot sizing; and (3) scheduling with limited machine availability. 
2.1 PCB assembly shop scheduling 
Many factors affect the efficiency of PCB assembly, such as customer orders, 
component allocation, PCB grouping, component sequence and feeder arrangement. 
Many researchers have developed different algorithms to optimize different factors in 
the PCB assembly. Krishnan (2014) studied placement optimization in a PCB 
assembly process, and proposed a neighbourhood search heuristic to optimize the 
component placement sequence and minimize the placement time. Alkaya and Duman 
(2015) adopted a metaheuristic approach to optimize the chip shooter component 
placement machines by decomposing the problem into placement sequencing problem 
and feeder configuration problem. Raduly-Baka et al. (2017) proposed two heuristics 
based on job grouping to optimize the problem with the idea of constructing the 
minimum number of component reel modules. Navaei and ElMaraghy (2017) 
developed a new grouping and sequencing policy for finding the optimal sequence of 
various product variants to improve machine utilisation. Tóth et al. (2018) presented a 
two-step optimisation method for the machine reconfiguration and workload 
balancing in the case of multiple PCB batches of different sizes and PCB types.  
2.2 Scheduling with lot sizing 
The technique of lot sizing (lot streaming) has been widely used in scheduling in 
recent years. Cheng et al. (2013) summarized that lot streaming has been applied for 
the processing of jobs in a variety of machine configurations, including flow shops, 
job shops, open shops, parallel machines, and hybrid flow shops. Chakaravarthy et al. 
(2014) proposed improved sheep flock heredity algorithm and artificial bee colony 
algorithms to solve n-jobs, m-machines lot streaming problem in a flow shop with an 



equal size of sub-lots. Nejati et al. (2016) addressed the two-stage assembly 
scheduling problem with m machines at the first stage and n assembly machines at the 
second stage with the consideration of lot sizing issue, and proposed a genetic 
algorithm and simulated annealing approach to optimize the two-stage assembly 
hybrid flow shop problem. Huang and Yu (2017) developed an improved ant colony 
optimization to resolve multi-objective job shop scheduling problem with equal-size 
lot splitting. Wang et al. (2019) studied integrated batching and lot streaming problem 
with variable sub-lots, incompatible job families, and sequence-dependent setup 
times, and developed heuristics for an efficient solution. From the literature we can 
see that most studies only indicate the condition of job grouping or assume that job 
batches already exist, whereas very few studies have addressed how to decide the job 
batches. 
2.3 Scheduling with limited machine availability 
The traditional scheduling problem assumes that machines are continuously available 
for processing throughout the planning horizon. However, in industrial practice, this 
availability may not be true due to e.g. a machine breakdown (stochastic) or 
preventive maintenance or calendar capacity (deterministic). Seidgar et al. (2016) 
employed three multi-objective optimization methods, namely fast non-dominated 
sorting genetic algorithm, multi-objective imperialist competitive algorithm, and non-
dominated ranking genetic algorithm to find the pareto-optimal front for large sized 
two-stage assembly flow shop scheduling problem with preventive maintenance 
activities. Seidgar et al. (2017) investigated a two-stage assembly flow shop problem 
which considers machines breakdown, and presented a genetic algorithm and new 
self-adapted differential evolutionary algorithm. Cui et al. (2017) proposed a 
proactive approach to deal with the integration of production scheduling and 
maintenance planning in flow shops. González-Neira et al. (2017) provided a general 
overview of the flow shop scheduling problems under uncertainties. Han et al. (2018) 
proposed an evolutionary multi-objective robust scheduling algorithm for blocking 
lot-streaming flow shop scheduling problems with machine breakdowns. 



Based on the above brief literature review, we find that although a broad 
literature on PCB assembly shop scheduling has been published, only few studies 
have dealt with the hybrid flow shop scheduling problem with a joint consideration of 
lot sizing and calendar constraints, which are real-life restrictions in PCB assembly 
shops and should not be simplified or ignored. This study therefore is an attempt to 
bridge this gap by proposing a comprehensive solution to this complicated scheduling 
problem which coordinates all important characteristics. In this study, we develop a 
hierarchical approach which decomposes the original problem into two highly 
coupled sub-problems including job sequencing and lot scheduling with lot sizing, 
and further propose a two-stage ant colony algorithm with lot sizing to evolve best 
results in the makespan performance. 
3 Problem formulation 
3.1 Description of PCB assembly shop scheduling 
The layout detail of the assembly shop in the case company is depicted in Fig.1. All 
the PCBs pass through 5 stages of manufacturing (assembly) process: surface 
mounting, reflow soldering, automatic/manual insertion, wave soldering and 
inspection by burn-in testing. The PCBs composed by small electronic elements might 
skip the insertion stage. After the final test, the PCBs will go into assembly lines for 
the final products. 



 

Fig.1 Layout of the PCB assembly shop 



Suppose that there are n jobs and m stages in the PCB assembly shop where each 
job is available at time zero and contains lot of items of the same kind. Each stage can 
be processed by several machines, which are capacitated. The capacity, which is 
limited, will be consumed in producing items. The target is to minimize the 
makespan. Assumptions and constraints for the scheduling problem are as follows: 

1) All jobs are independent and available for processing at the initial time of 
scheduling. 

2) Each job contains identical items with the same ready time and due date and 
can be separated into several sub-lots.  

3) One machine can process only one job at a time and one job can be processed 
by only one machine at any time. 

4) All the items in a sub-lot should be processed on the same machine. 
5) A new sub-lot can start only after the completion of the previous sub-lot 

produced on the same machine, i.e., preemption is not allowed. 
6) The machines at every stage are unrelated, i.e., the processing times of 

different machines to complete the same sub-lot are different. 
7) Not all jobs are required to go through all stages, e.g., some jobs might skip 

some production stages. 
Fig.2 (a) shows an example of scheduling of 2 jobs, each with 2 items, being 

processed through 3 stages. Each stage of the production system contains 2 unrelated 
parallel machines capacitated by calendar. Job1 can skip stage 2. In this particular 
case, we assume that a sub-lot contains only one item. The grey fields in the Gantt 
chart represent the available times for each machine and a sub-lot is marked by two 
digits composed by job and sub-lot number respectively. For instance, sub-lot “12” 
means the second sub-lot of job 1. 

As reviewed previously, scheduling with calendar constraints was poorly 
studied. Fig.2 (b) shows the traditional lot scheduling approach. Traditionally when 
we assign a job with lots of items to a machine, we first split the job to several sub-
lots according to some criteria, then we obtain a sequence of the sub-lots and assign 
the sub-lots to the machine in continuous time axis. In this paper, we adopt an 



approach named “lot scheduling with capacity”. As the available time for a machine is 
not continuous in the investigated problem, we consider the capacities, segments of 
continuous time, as the research objects. Specifically, we sequence the capacities and 
assign the capacities to the jobs according to capacity sequence until all the items are 
assigned. As shown in Fig.2 (c), the grey fields are available times (capacities) of 
machine M1. Suppose we take the capacity sequence “213”, then the capacity 2 will 
be assigned to the job first, followed by capacity 1, and finally capability 3. As 
depicted in the figure, capacity 2 cannot arrange all the items, therefore, we split these 
items (which are originally assigned to capacity 2) to form a sub-lot, named sub-lot 1, 
and assign the rest of the job to capacity 1 and 3. We repeat this process till all items 
are assigned with capacity. 

Time

a) An example of scheduling for 2 jobs being processed through 3 stages

b) Traditional lot scheduling approach c) Lot scheduling with capacity
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Fig.2 Examples of the PCB assembly shop scheduling 

3.2 Mathematical formulation 
Now a complete mathematical model is developed with the consideration of all issues 
mentioned above. Suppose that there are totally n jobs {J1, J2, … , Jn} to be 



scheduled. Each job Ji needs maximum m stages to be completed where stage j of job 
Ji is denoted Oi,j and Oi,j can be separated to Li,j sub-lots where sub-lot k of stage Oi,j is 
denoted by Bi,j,k. Each stage Oi,j can be processed by Mi,j unrelated machines where 
machine e that processes Oi,j can be donated by Ei,j,e. We assume that the start 
processing time and unit processing time of stage Oi,j, which depend on the assigned 
machine Ei,j,e in sub-lot Bi,j,k, are denoted by Si,j,k,e and UPi,j,k,e respectively. If the job 
Ji can skip the stage j, then we will assume Oi,j to be ∅ and set UPi,j,k,e to be 0. Each 
job Ji∈ {J1, J2, … , Jn} has a time window (Ri, Di) where Ri, namely release date, is 
the earliest time that the job can begin and Di is the due time of job i. The notations 
including parameters, indices and variables used in the mathematical model are shown 
in Table 1. 
Table 1 Parameters, indices and variables used in the models. 
Notations Description 
n number of jobs 
m number of maximum stages for all jobs 
M a large positive constant 
Li,j set of sub-lots separated by stage j of job Ji 
Mi,j set of machines that can process stage j of job Ji 
Ji index of job i 
Oi,j index of stage j in job Ji 
Bi,j,k index of batch k of stage Oi,j 
Ei,j,e index of machine e that process Oi,j 
Ri the release time of job Ji 
Di the due time of job Ji 
Qi the quantity of job Ji 
Seti1, i2 the setup time between jobs i1 and i2 
Qi,j,k the quantity of sub-lot Bi,j,k 
Si,j,k,e the start time of sub-lot Bi,j,k on machine Ei,j,e 
UPi,j,k,e the unit process time of sub-lot Bi,j,k on machine Ei,j,e 
Ci the end time of job Ji 
Xi1,j1,k1,e,i2,j2,k2,e Takes value 1 if sub-lot Bi2,j2,k2 is processed right after sub-lot Bi1,j1,k1 on machine Ei,j,e 

and 0 otherwise 
Yi,j,k,e Takes value 1 if sub-lot Bi,j,k is processed on machine Ei,j,e and 0 otherwise 

The objective of the scheduling problem is to minimize the makespan, which is 
shown in the objective function.  



( ( ))iF Min Max C i n               (1) 
In the objective function, the makespan is defined as the complete time of all the 

jobs and is formulated as follows. 
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Constraint 4 ensures each sub-lot should be processed by exactly one machine. 
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Constraint 5 guarantees all the sub-lots at the same stage will be processed on the 
same machine. 
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Constraint 6 indicates that one machine can only process one sub-lot at a time. 
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Constraint 7 is introduced to ensure the start time of any two consecutive sub-
lots Bi1,j1,k1 and Bi2,j2,k2 on the same machine to be strictly increasing. The term ensures 
the constraint applies only if sub-lot Bi2,j2,k2 is processed right after sub-lot Bi1,j1,k1 on 
machine e. 
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Constraint 8 represents a sub-lot quantity constraint. At any given time t, the 
finished quantity of all the batches at stage Oi,j should not excess the finished quantity 
of the previous stage Oi,j-1. 
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The start time for each job cannot be earlier than the ready time for the job, and 
this is satisfied by constraint 9. 

, , , ,, ,      i j k e i i jS R i n j m k L                      (9) 

4 Two-stage ant colony algorithm with lot sizing 
Due to the high complexity of the hybrid flow shop scheduling problem with lot 
sizing and calendar constraints, the exact method cannot obtain a feasible solution in 
an acceptable computational time. Although many heuristic algorithms based on 
dispatching rules have been employed with higher efficiency, the quality of the 
solution often deteriorates as the problem size increases because of the existence of 
many local optima. An intelligent algorithm has obvious advantages in solving 
complex production scheduling problems due to its optimization goal of seeking 
satisfactory solutions, easy integration of problem knowledge and expert experience, 
and procedure robustness. 

As a promising swarm intelligence algorithm, the ant colony algorithm (ACA) 
has been widely used to solve large-scale combinatorial optimization problems since 
its first introduction by Dorigo (1992). The advantages are mainly due to its positive 
feedback, concurrency, robustness, global search, and independent of strict 
mathematical properties, among others. As an algorithm aiming to search for an 
optimal path in a graph, ACA was first introduced to solve the travel sales problem 
(TSP) successfully (Dorigo et al. 1997; Dorigo and Gambardella. 1997). Since then, 
many studies have emerged on the implementation of ACA to solve the combinatorial 
problem, especially scheduling problem. Now many scholars are working on solving 
the hybrid flow shop scheduling problem by using ACA, which is similar to the PCB 



scheduling problem. Ying and Lin (2006) proposed a novel ant colony system 
heuristic to solve multistage hybrid flow shop scheduling problem with 
multiprocessor tasks, verified the superiority of ACA for solving these problems with 
the comparison of genetic algorithms and simulated annealing algorithms. Khalouli et 
al. (2011) decomposed a multistage hybrid flow shop scheduling problem into 
assignment and sequencing sub-problems, and proposed ant colony optimization 
algorithm to minimize the makespan. Qin et al. (2015) proposed an ACA based 
rescheduling approach for a dynamic hybrid flow shop scheduling problem with 
uncertain processing times.  

The hierarchical approach can decompose a complex problem into several small 
problems that are easy to be solved, and thus this approach reduces the difficulty of 
solving the problem (Arnaout et al. 2010). Therefore, the hierarchical approach has 
broad prospects for such extremely complicated problems as the PCB scheduling 
problem. Besides, traditional scheduling problems rarely consider batching of items, 
and therefore scheduling individual item is not available in actual production 
processes. But in practice, each job will contain multiple items, and batching will 
enhance production tempo and improve equipment utilization (Wang et al. 2019). In 
this paper, we develop a solution procedure based on ACA for hybrid flow shop 
scheduling with lot sizing and calendar constraints. 
4.1 Two stage structure and algorithm flow chart 

Considering the complexity of the investigated problem, we decompose the 
original problem into two highly coupled sub-problems, which are job sequencing and 
lot scheduling of a job. This means that a job sequence needs to be determined firstly 
and then performs lot scheduling of each job till the time that all jobs are finished. 
This method is similar to the one proposed in Arnaout et al. (2010). As described 
above, ACA has been proved to be a prominent tool for scheduling problems. We 
adopt ACA to solve the sub-problems and propose a two-stage ant colony algorithm 
with lot sizing (TSACAWLS). The flow chart of proposed algorithm is shown in 
Fig.3, and the structure of the proposed two-stage ACA is shown in Fig.4. As shown 



in the figure, the investigated problem is divided into two highly coupled stages: at 
stage 1, we determine the sequence of jobs; and at stage 2, we separate the production 
stages of each job into multiple sub-lots and assign all sub-lots to the machines. We 
decide to manage each of these stages with an ant system scheme. 

 

Fig.3 Flow chart of two-stage ant colony algorithm with lot sizing 

 



Fig.4 Structure of two-stage ant colony algorithm with lot sizing 

4.2 Stage 1: Job sequencing 
Stage 1 mainly deals with job sequencing problem to minimize the makespan of all 
jobs. We express the output of first stage with a vector (S1) that contains n entries and 
each entry represents a job. We arrange the sub-lots of jobs to machines according to 
the sequence in the vector. For instance, if we have 10 jobs to be scheduled, the 
following vector: S1 = [3 1 5 6 2 9 7 8 4 10] will represent the sequence arrangement 
of all the jobs. We introduce ,Ii j  and ,Ii j  to express the pheromone trail and the 
visibility of ant respectively. The possibility to select job j after i and the value of 

,Ii j is calculated as follows: 
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After all ants finish their paths, we update the pheromone amounts in each link 

locally by reducing the amount due to evaporation and globally by increasing the 
amounts of pheromone in the routes constructed by the ant that produces the best 
objective function (OFbest). This is estimated according to the following formulas: 
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      (13) 
Where OFbest, representing the makespan of the best job sequence, is the 

objective function with respect to the best vector S1best. The objective function of a job 
sequence can be calculated through stage 2. 
4.3 Stage 2: Lot scheduling and lot sizing 
In order to calculate the objective function of a job sequence given by stage 1, we 
would schedule the sub-lots at stage 2 after separating the production stages of the job 



into several sub-lots. The model at stage 2 can be separated into two highly coupled 
sub-problems: sub-lots scheduling problem and lot sizing problem. For the first 
problem, we solve by using another ant system scheme for each production stage. For 
the second problem, we propose a lot sizing technique to separate each stage of a job 
into several sub-lots in the process of scheduling. 

As we emphasize previously, the machines at each stage are capacitated by 
calendar, hence they are not always available in the investigated hybrid flow shop. 
The calendar sets the work shifts of all machines. A work shift, also called a capacity, 
is a segment of continuous available time of a machine. We schedule each stage of a 
job with an ant system scheme and express the output with a vector (S2) that contains 
m entries with each entry representing a capacity. After that, a sub-lot will be arranged 
to the capacity according to the sequence in the vector. For instance, if we have 15 
capacities for a job to be sequenced, then the following vector: S2 = [5 2 1 12 13 4 11 
14 8 3 7 9 10 15 6] will represent the arrangement sequence of capacities for the sub-
lots of the job at that production stage. In other words, we will assign the capacity 5 as 
the highest priority to arrange the job. As we describe previously, several machines 
will be capable of processing a production stage Oi,j, it is vital to choose a suitable 
machine to process the job at the production stage. We assume the set of machines at 
stage Oi,j to be Ei,j and entitle each machine in Ei,j with an objective value OV. The 
machine with the largest OV will be selected for the production stage. 
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Where l  is the weight of quantity of the sub-lot. 
cT  is the weight of start time. 



N is the available number of capacity which has a start time later than the earliest 
end time of the previous stage and end time earlier than the due date. 

, ( )i jS c is the start time of capacity c. 
The pheromone trail ( ,IIi j ) is defined at this stage to indicate the latest completion 

time of the production stage. In addition to the pheromone, we introduce ,IIi j  to 
express the visibility of ant. The possibility to select capacity j after i and the value of 

,IIi j  are calculated as follows: 
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1IIij jEnd                (18) 
Where Endj is the end time of capacity j 
After all ants finish their paths, we will update the pheromone locally and 

globally with the similar manner of AS scheme at stage 1.  
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Where OVbest is the objective value of the best vector at stage 2, representing the 
minimum completion time of the stage. It can be calculated by the vector S2 combined 
with the lot sizing technique below. Algorithm 1 shows the pseudo code for stage 2. 
Algorithm 1: Lot Scheduling 
1: Set i = 1 2: while i ≤ n do 3:  Select Ji in vector S1 4:  Set j = 1 5:  while j ≤ m do 6:    Schedule Oi,j based on the lot sizing procedure 7:    𝑗 ⇐ 𝑗 + 1 8:    if 𝑂𝑖,𝑗 =  ∅ then 9:     𝑗 ⇐ 𝑗 + 1 10:    end if  11:  end while  



12: end while  
In order to separate the stage into multiple sub-lots and calculate the completion 

time of the production stage, we propose a lot sizing method. Algorithm 2 shows the 
pseudo code of lot sizing procedure for Oi,j. 
Algorithm 2: Lot sizing procedure for Oi,j 1: 𝐸𝑖,𝑗,𝑒 , 𝑆2 ⇐ 𝑂𝑖,𝑗 and N ⇐ number of entries in 𝑆2 
2: Set k = 1 and l=1 3: while k ≤ N do 4:   Calculate DQi,j,k = (Ci,j,k,e - Si,j,k,e) * effe 5:   if DQi,j,k ≥ Qi then  6:     Qi,j,l = Qi, DQi,j,k = DQi,j,k - Qi and stop 7:   else 8:     Calculate 𝑂𝑄𝑖,𝑗,𝑘 = ∑ 𝑄𝑖,𝑗−1,𝑘1𝑘1∈Φ(𝑘1) − ∑ 𝑄𝑖,𝑗,𝑘2𝑘2<𝑘 , Φ(𝑘1) = {𝑘1|𝐶𝑖,𝑗−1,𝑘1

< 𝑆𝑘} 9:     if DQi,j,k ≥ OQi,j,k then  10:       Qi,j,l = OQi,j,k and stop 11:    else 12:       Qi,j,l = DQi,j,k, Qi = Qi - DQi,j,k and l = l +1 13:    end if  14:  end if  15:  𝑘 ⇐ 𝑘 + 1 16: end while  
4.4 Local search strategy 
It is known that ACA usually provides very competitive solutions when integrated 
with local search. Therefore, we include a local search algorithm in our 
implementation of ACA. After the ant k finishes its route search process, we generate 
neighbouring solutions for the ant in S1 and S2. If the local search generates a better 
solution at that iteration, we will use the local search solution at that iteration to 
update the pheromone. The neighbouring solution for S1 is generated by rotating a 
random entry in the vector to the first position while that for S2 by swapping two 
randomly generated entries in the vector. Algorithm 3 shows the pseudo code for the 
local search. 
Algorithm 3: Local Search 
1: Set LocalIteration = 1 2: while LocalIteration ≤ MaxNoLocalIteration do 3:  Generate 𝑟𝑣 ⇐ U (0,1) 



4:   if 𝑟𝑣 < 0.5 then  5:    Generate S1 (S2) 6:    Calculate OV 7:    if 𝑂𝑉(𝐿𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) <  𝑂𝑉(𝐴𝑛𝑡) then 8:     𝑂𝑉(𝐴𝑛𝑡) = 𝑂𝑉(𝐿𝑜𝑐𝑎𝑙𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) 9:    end if  10:  end if  11: end while  
The innovative aspect of our solution methodology is the use of two highly 

coupled hierarchical trails to solve the problem: one for sequencing the jobs, and the 
other is combined with lot sizing technique for lot scheduling of a job. The pseudo 
code for proposed algorithm is shown in Algorithm 4. 
Algorithm 4: Complete Algorithm 
1: Populate the path with specified pheromone amounts (𝜏𝑖,𝑗

𝐼 , 𝜏𝑖,𝑗
𝐼𝐼 ) 

2: Set Iteration = 1 3: while Iteration ≤ MaxNoIteration 4:   Set ant= 1 5:   while ant ≤ MaxNoAnt do 6:     Search for S1 in stage 1, refer to Eqs. 10, 11, 12 and 13 7:     Schedule all the entries in S1 with Algorithm 1 8:     Algorithm 3 in stage 2 9:     Update pheromone amounts locally and globally in stage 2 10:    ant= ant+1 11:  end while 12:  Algorithm 3 in stage 1 13:  Update pheromone amounts locally and globally in stage 1 14:  Iteration = Iteration +1 15: end while 
5 Results 
To investigate the effectiveness of the proposed two-stage ant colony algorithm for 
hybrid flow shop scheduling with lot sizing and calendar constraints in printed circuit 
board assembly, uniform experiments are utilized to determine the appropriate 
parameter values for the ACA that will minimize the makespan of all the jobs. We 
verify the effectiveness of the algorithms with real data from the PCB assembly 
enterprise. The data can be classified into two categories. 



1) Job information. 32 jobs are generated for the test. A job contains at most 5 
stages, namely, surface mounting, reflow soldering, automatic/manual insertion, wave 
soldering and Test, marked stage 1-5 respectively. The job information tells us the 
release time, due date and quantity for each job, as shown in Table 2(a). 

2) Machine information. As described above, stage 1 and 2 represent the front 
and back side of surface mounting, PCBs with one side mounting can skip stage 2 and 
PCBs without large elements will skip stage 3 (Plug-in). Table 2(b) shows the work 
shift and process time for all machines. As can be seen from the table, machines 1 and 
2 are bottleneck machines. 

The experiments are implemented in Microsoft Visual Studio 2008 in C# 
language and tested on Window 7 with a Core2 E8400 CPU at 2.8 GHz and 2GB of 
RAM.  
Table 2 Real data from a PCB assembly enterprise 

a) Job information 
JobNo Quantity Release Time Due Date 
1 900 2017/5/24 8:00 2017-6-3 0:00:00 
2 800 2017/5/24 8:00 2017-6-3 0:00:00 
3 600 2017/5/24 8:00 2017-6-4 0:00:00 
4 900 2017/5/24 8:00 2017-6-2 0:00:00 
5 800 2017/5/24 8:00 2017-6-3 0:00:00 
6 800 2017/5/24 8:00 2017-6-3 0:00:00 
7 700 2017/5/24 8:00 2017-6-4 0:00:00 
8 800 2017/5/24 8:00 2017-6-1 0:00:00 
9 600 2017/5/24 8:00 2017-6-3 0:00:00 
10 700 2017/5/24 8:00 2017-6-1 0:00:00 
11 800 2017/5/24 8:00 2017-6-4 0:00:00 
12 600 2017/5/24 8:00 2017-6-1 0:00:00 
13 600 2017/5/24 8:00 2017-6-1 0:00:00 
14 800 2017/5/24 8:00 2017-6-1 0:00:00 
15 700 2017/5/24 8:00 2017-6-3 0:00:00 
16 600 2017/5/24 8:00 2017-6-4 0:00:00 
17 700 2017/5/24 8:00 2017-6-1 0:00:00 
18 700 2017/5/24 8:00 2017-6-4 0:00:00 
19 900 2017/5/24 8:00 2017-6-1 0:00:00 
20 800 2017/5/24 8:00 2017-6-3 0:00:00 
21 900 2017/5/24 8:00 2017-6-4 0:00:00 



22 900 2017/5/24 8:00 2017-6-2 0:00:00 
23 700 2017/5/24 8:00 2017-6-3 0:00:00 
24 900 2017/5/24 8:00 2017-6-3 0:00:00 
25 800 2017/5/24 8:00 2017-6-4 0:00:00 
26 800 2017/5/24 8:00 2017-6-2 0:00:00 
27 900 2017/5/24 8:00 2017-6-4 0:00:00 
28 900 2017/5/24 8:00 2017-6-2 0:00:00 
29 800 2017/5/24 8:00 2017-6-2 0:00:00 
30 800 2017/5/24 8:00 2017-6-3 0:00:00 
31 700 2017/5/24 8:00 2017-6-4 0:00:00 
32 700 2017/5/24 8:00 2017-6-2 0:00:00 

b) Machine information 
Stage Machine Shift mode ST ET PT 

(PCB/h) ST ET 
1(2) 1 2 shifts 8:00 20:00 U(30,40) 20:00 8:00(next day) 

2 2 shifts 8:00 20:00 U(40,50) 20:00 8:00(next day) 
3 3 1 shift 8:00 20:00 U(80,100) - - 

4 1 shift 8:00 20:00 U(80,120) - - 
4 5 1 shift 8:00 20:00 U(80,100) - - 

6 1 shift 8:00 20:00 U(80,120) - - 
5 

7 1 shift 8:00 20:00 U(80,100) - - 
8 1 shift 8:00 20:00 U(100,120) - - 
9 1 shift 8:00 20:00 U(80,120) - - 

* ST: Start Time; ET: End Time; PT: Process Time 

5.1 Parameters setting 
The values of investigation factors considered in this experiment have been set as four 
different levels, respectively as follows: α: (1,2,3,4), β: (2,3,4,5) and ρ: 

(0.1,0.2,0.3,0.4); where ρ is the pheromone evaporation. The choice of these values is 
based on many preliminary runs under different settings. To reduce the number of 
runs but reach sound conclusions, uniform experiments are utilized, which have 
shown to be an effective design (Fang et al. 2018). Table 3 shows the value 
combination of the factors. We donate the 16 groups of parameters in this table to be 
Com1, Com2, …, Com16 respectively. 
Table 3 Design of uniform experiment 

Com 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
α 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 



β 2 4 3 5 5 3 4 2 3 5 2 4 4 2 5 3 
ρ 0.3 0.1 0.2 0.4 0.2 0.4 0.3 0.1 0.1 0.3 0.4 0.2 0.4 0.2 0.1 0.3 

We select jobs 1-10 in Table 1(a), and run 20 times for each group of parameters. 
The value min

max min
xDEV 




 is defined to evaluate the results, where x is the 
average value of makespan for each group of parameters, min is the global best value 
and max is the global worst value in all the experiments. The results with lower DEV 
are better. Finally, we sequence the DEVs according to their value and mark the 95% 
confident interval of every Com. The results are shown in Fig.5. It can be clearly seen 
the Com 11 makes the best performance. 

 

Fig.5 Sorted results of the Coms according to their DEVs value 
In order to analyse the reason of the significant difference, we adopt the Post 

Hoc analysis to the results. Table 4 shows the comparison of Com11 to other Coms. 
Though Com11 and Com15, 5, 4, 2, 10, 9 and 8 do not exist significant difference at 
the confident interval of 0.05, the mean value of Com11 is lower than the other Coms. 
In order to improve the chance of obtaining the optimal result, we adopt the 
parameters in Com 11. 
Table 4 Post Hoc Analysis on the comparison of Com11 to other Coms 

Com (I) Com (J) Mean 
Difference (I-J) Std. Error Sig. 

95% Confident 
Interval 
Lower Upper 

11 3 -0.54135* 0.05455  0.000  -0.69773  -0.38497  
13 -0.41472* 0.05455  0.000  -0.55594  -0.27350  
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6 -0.31667* 0.05455  0.000  -0.42621  -0.20713  
1 -0.26127* 0.05455  0.000  -0.29134  -0.23120  
12 -0.18192* 0.05455  0.019  -0.20684  -0.15699  
7 -0.17333* 0.05455  0.030  -0.19325  -0.15341  
16 -0.08582* 0.05455  0.038  -0.09485  -0.07679  
14 -0.07737* 0.05455  0.043  -0.09540  -0.05934  
8 -0.06192  0.05455  0.071  -0.08012  -0.04371  
9 -0.05128  0.05455  0.196  -0.06917  -0.03339  
10 -0.01668  0.05455  0.235  -0.02561  -0.00776  
2 -0.01489  0.05455  0.542  -0.02332  -0.00645  
4 -0.01457  0.05455  0.683  -0.02357  -0.00558  
5 -0.00183  0.05455  0.729  -0.00953  0.00587  
15 -0.00140  0.05455  0.836  -0.00598  0.00319  

5.2 Convergence validation 
As it is difficult to theoretically prove the convergence of the algorithm, we validate 
the convergence with real examples. We run the algorithm with jobs 1-10 in table1 (a) 
three times with the parameters in Com11. The other parameters are set as follows: 
Ant = 5, Iteration = {3, 6, 9, …, 99}. The ACA at stage 1 and stage 2 followed the 
same parameters setting. Fig.6 shows the best results with respect to every iteration. It 
can be seen that the algorithm would converge to an optimal value with the iteration 
to be around 66. 

 

Fig.6 Verify the convergence of the algorithm 
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5.3 Comparisons with other heuristics 
As mentioned above, few works have dealt with hybrid flow shop scheduling problem 
with lot sizing and calendar constraints. For lack of benchmark instances and 
comparison algorithms, we will illustrate the superiority of ACA and lot sizing 
respectively. We compare our purposed two-stage ant colony algorithm with lot sizing 
(TSACAWLS) with two-stage Simulated Annealing with lot sizing (TSSAWLS) in 
order to validate the superiority of the ACA algorithm under lot sizing and make a 
comparison with two-stage ant colony algorithm (TSACA) to verify the effectiveness 
of the lot-sizing technique. The above three algorithms are compared with two-stage 
earliest due date (TSEDD) rule to check that the meta-heuristic algorithms outperform 
the dispatch rule. 

TSSAWLS shares the same structure with the TSACAWLS and is formed by 
replacing the ACA algorithms in TSACAWLS with SA algorithm proposed by 
Marimuthu (2007). As the SA algorithm is robust, we adopt the same parameters in 
that study. TSACA is proposed by removing the lot sizing technique in TSACAWLS, 
and TSEDD is constructed by replacing the ACA algorithm in TSACA with EDD 
rule. The algorithms are run on different sizes of problem (3, 6, 10, 14, 18, 24, 28 and 
32 jobs) and each size is tested with 20 instances of the problem. The jobs are selected 
from Table 1. 
Table 5 Solutions for different algorithms 

Jobs TSACAWLS TSSAWLS   TSACA  TSEDD 
avg  min avg  min avg  min avg  min 

3 4553 4553 4762 4762 5573 5573 7766 7766 
6 7997.1 7820 9261.2 8669 9879.3 9356 11211 11211 
10 12076.8 11376 13066.4 11986 15378.5 14832 18775 18775 
14 15063.7 14001 15898.4 14532 20498.8 19768 23572 23572 
18 17938.3 16871 19179.1 17638 26386.7 25673 29714 29714 
24 25187.5 24144 26663.6 24873 30465.2 29659 37933 37933 
28 27998.4 26950 29901.1 27960 35658.3 34786 43785 43785 
32 32174.3 30563 34832.9 31835 41513.6 40365 54000 54000 

 



 

Fig.7 a) Average value for different algorithms, and b) Optimal value for different algorithms 
Table 5, and Fig.7 show the average value (avg) and optimal value (min) for all 

problem structures and algorithms. It can be seen that the meta-heuristic algorithms 
(TSACAWLS, TSACA and TSSAWLS) outperform the dispatch rule (TSEDD), and 
TSACAWLS is better than TSSAWLS and TSACA. Even though TSACAWLS 
outperforms TSSAWLS and TSACA in all problem sizes, the latter’s solutions appear 
to be close to the ones of TSACAWLS. The t-test is used to exam if their optimal 
value (min) and average value (avg) are significant different. The comparison of the 
min of TSACAWLS and TSSAWLS, the min of TSACAWLS and TSACA, the avg 
of TSACAWLS and TSSAWLS, the avg of TSACAWLS and TSACA are marked 
min(ACAL-SA), min(ACAL-ACA), avg(ACAL-SA) and avg(ACAL-ACA), 
respectively. 
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Tables 6(a), (b), and (c) show the results of t-test for different problem sizes. It 
can be clearly seen that the min and avg value of TSACAWLS are significantly better 
than that of TSSAWLS and TSACA. 
Table 6 Results of t-test for different problem sizes 

a) Samples Statistics for different groups 
group Mean N Std.Deviation Std. Error Mean 
min(ACAL-ACA) 17034.75 8 9364.25 3310.76375 

22501.50 8 12288.05 4344.48198 
avg(ACAL-ACA) 17873.64 8 9834.35 3476.96753 

23169.18 8 12593.38 4452.43170 
min(ACAL-SA) 17034.75 8 9364.25 3310.76375 

17781.88 8 9622.18 3401.95531 
avg(ACAL-SA) 17873.64 8 9834.35 3476.96753 

19195.59 8 10490.57 3708.97538 
b) Samples Correlation for different groups 

group N Correlation Sig. 
min(ACAL-ACA) 8 0.991 0 
avg(ACAL-ACA) 8 0.993 0 
min(ACAL-SA) 8 1.000 0 
avg(ACAL-SA) 8 0.999 0 

c) T-test for different groups 

group Mean Std. 
Deviation 

Std. 
Error Mean 

95% Confident Interval t DF sig. 
(2-tailed) Lower Upper 

min(ACAL-ACA) -5466.75 3270.90 1156.44 -8201.29 -2732.21 -4.727 7 0.002 
avg(ACAL-ACA) -5295.54 3066.15 1084.05 -7858.91 -2732.17 -4.885 7 0.002 
min(ACAL-SA) -747.13 318.66 112.66 -1013.53 -480.72 -6.632 7 0 
avg(ACAL-SA) -1321.95 731.35 258.57 -1933.38 -710.52 -5.113 7 0.001 

Two metrics are used to compare the three meta-heuristic algorithms, namely 
stability and speed to obtain a near-optimal solution. We define the difference of the 
avg and min values to express the stability of the algorithm. Thus, the stability of one 
algorithm can be calculated by: δ = avg – min. The second metrics can be obtained by 
the average of computational time to obtain a near-optimal solution. 



 

Fig.8 a) Stability of algorithms and b) Computational time for all algorithms 
Fig.8 (a) shows the stability of the meta-heuristic algorithms. It can be seen that 

TSACAWLS, and TSACA outperform the TSSAWLS for all problem sizes and 
TSACA performs better than TSACAWLS when the number of jobs excess 11. Fig.8 
(b) depicts the average computational time (CPU time) of all algorithms. TSACA and 
TSACAWLS require less time for a near-optimal solution than TSSAWLS, and 
TSACA consumes less time than TSACAWLS.  

Fig.9 shows a Gantt Charts of all the algorithms for 32 jobs. It can be seen that 
TSACAWLS can converge to better solution than other algorithms. The algorithms 
with lot sizing technique (TSACAWLS and TSSAWLS) perform better than the 
algorithms without lot sizing (TSEDD and TSACA) in improving the utilization and 
balancing the load of bottleneck machines (machines 1 and 2). 
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Fig.9 Gantt Charts for different algorithms 
To further verify that the lot sizing can enhance the utilization and balance the 

load of bottleneck machines. We calculate the utilization (η) of every machine in the 
above Gantt charts and show the results in Fig.10. As the machines 1 and 2 are the 
bottleneck machines in PCB assembly. It is illustrated that the meta-heuristic methods 
(TSACA, TSACAWLS and TSSAWLS) can improve the utilization of bottlenecks 
compared to dispatch rule (TSEDD). Comparing TSACA, TSACAWLS and 
TSSAWLS, we can validate the conclusion that the algorithm considering lot sizing 
(TSSAWLS and TSACAWLS) perform better in improving the utilization and 
balancing the load of the bottleneck machines. 



 

Fig.10 Result of the lines utilization using four different methods 

6 Conclusions 
This study deals with a multi-stage PCB scheduling problem in a semiconductor 
manufacturing company, which is characterized by a combination of multiple features 
such as lot sizing, calendar constraints, sequence-dependent setup time, unrelated 
parallel machines and stage skipping. A two-stage ant colony algorithm combined 
with the lot sizing method is proposed to solve the complicated PCB assembly shop 
scheduling problem by partitioning them into two sub-problems. The numerical 
results show that the proposed two-stage ant colony algorithm can obtain a better 
near-optimal solution than other approaches in terms of stability and computational 
time, and the lot sizing technique can further enhance the utilization and balances the 
load of bottleneck machines. The study on this subject makes an important 
contribution to the overall knowledge in the field of PCB assembly shop scheduling. 
From another point of view, the development of the multi-stage ACA approach also 
expands the application scope of ant colony optimization in the complex production 
scheduling field. 

Although the research has dealt with several academically challenging issues, it 
has the following limitations and will be further studied in the future work. First, it 
didn’t consider the group batch process after the sub-lots of PCBs complete the 
operation on the SMT stage, for example, in the real-life production, mounted PCBs 
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from different lines will be formed as a batch to be inserted and wave soldered on one 
or more lines. Second, it didn’t involve multiple objectives, especially related with the 

due date such as total tardiness, which will be considered. Third, the influence of 
dynamic interrupts in actual production process wasn’t considered, and real-time 
scheduling or rescheduling based on the up-to-date shop floor information will be 
another direction of future research. 
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