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Abstract: Smart manufacturing has received increased attention from academia and industry in recent years, as it 

provides competitive advantage for manufacturing companies making industry more efficient and sustainable. As one of 

the most important technologies for smart manufacturing, big data analytics can uncover hidden knowledge and other 

useful information like relations between lifecycle decisions and process parameters helping industrial leaders to make 

more-informed business decisions in complex management environments. However, according to the literature, big data 

analytics and smart manufacturing were individually researched in academia and industry. To provide theoretical 

foundations for the research community to further develop scientific insights in applying big data analytics to smart 

manufacturing, it is necessary to summarize the existing research progress and weakness. In this paper, through 

combining the key technologies of smart manufacturing and the idea of ubiquitous servitization in the whole lifecycle, 

the term of sustainable smart manufacturing was coined. A comprehensive overview of big data in smart manufacturing 

was conducted, and a conceptual framework was proposed from the perspective of product lifecycle. The proposed 

framework allows analyzing potential applications and key advantages, and the discussion of current challenges and 

future research directions provides valuable insights for academia and industry. 

Keywords: big data analytics; smart manufacturing; servitization; sustainable production; conceptual framework; 

product lifecycle
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ABS Agent-based system IT Information technology

ACO Ant colony optimization JIT Just-in-time

AD Anomaly detection KBV Knowledge-based view

AGV Automatic guided vehicles KNN K-nearest neighbor 
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AHMS Airplane health management system KPI Key performance indicator

AI Artificial intelligence LCA Life cycle assessment

ANN Artificial neural networks MES Manufacturing execution system

BDA Big data analytics MGI McKinsey Global Institute

BI Business intelligence MOL Middle of life

BOL Beginning of life NIST National institute of standards and technology

BPNN Back propagation neural networks NN Neural networks

CAD Computer aided design NSGA-II Non-dominated sorting genetic algorithm-II

CAE Computer aided engineering OEMs Original equipment manufacturers

CAPP Computer aided process planning PCA Principal component analysis 

CC Cloud computing PDM Product data management

CMfg Cloud manufacturing PLM Product lifecycle management 

CP Cleaner production PSOA Particle swarm optimization algorithm

CPPS Cyber-physical production systems PSS Product service system

CPS Cyber-physical systems QoS Quality of service

CPSS Cyber-physical sensor system R&D Research and development

DM Data mining RBFN Radial basis function network

DSS Decision support systems RBV Resource-based view

DT Decision tree RFID Radio frequency identification 

EISs Enterprise information systems RST Rough set theory

EIU Economist intelligence unit SA Simulated annealing

EM Expectation maximization SCA Sustainable competitive advantage 

EOL End of life SCM Supply chain management

ERP Enterprise resource planning SCRU Supply chain risks and uncertainties

GA Genetic algorithm SM Smart manufacturing

GE General electric SOT Service-oriented technologies 

GSCM Green supply chain management SSM Sustainable smart manufacturing

IBM International business machine SVM Support vector machine

IDC International data corporation TS Tabu search

IIoT Industrial internet of things VNS Variable neighborhood search

IoMT Internet of manufacturing things WIP Work in process

1. Introduction

Sustainable production and consumption is a competitive strategy for manufacturing enterprises as its implementation 

can help manufacturers to achieve overall development plans, reduce resource use, degradation and pollution along the 

whole lifecycle (Roy and Singh, 2017). This strategy can promote practices of resource and energy efficiency and reduce 

future economic and social costs by offering basic services for all stakeholders. Therefore, servitization, as a high-level 

term for service-oriented strategies, is gaining attention from many manufacturers. As a result, integration of services and 

products into one PSS (Gao et al., 2011) to implement sustainable production and consumption strategies has become a 

popular focus for researchers engaged with sustainability (Tukker, 2015). 
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Within this context, it has become increasingly important for manufacturers to transform their business models to 

effectively collaborate with business partners improving their SCA (ElMaraghy and ElMaraghy, 2014; Liu, 2013; Liu 

and Liang, 2015; Tao et al., 2015). This requires the establishment of a collaborative infrastructure to continuously 

understand and satisfy customer needs and to reduce environmental impacts (Ahn et al., 2017; Song et al., 2016, 2017b), 

with seamless inter-connections and resource sharing among different manufacturers. Many advanced manufacturing 

paradigms, such as lean manufacturing (Holweg, 2007), JIT manufacturing (Huson and Nanda, 1995), agile 

manufacturing (Sanchez and Nagi, 2001), green manufacturing (Rusinko, 2007), and sustainable manufacturing (Jayal et 

al., 2010) have been proposed ways to achieve these goals, but these approaches lack visibility and interoperability of 

manufacturing resources and products. 

The major challenges are: 1) Lack of dynamic network infrastructure to link physical and virtual objects; 2) Lack of 

interoperable EISs to ensure effective integration and centralized management of the heterogeneous lifecycle data; 3) 

Lack of advanced analytics technologies to perform in-depth analyses of lifecycle data and to provide knowledge support 

for dynamic lifecycle decisions. The development of information technologies, such as IoT (Perera et al., 2015), SOT 

(Demirkan et al., 2008), CC (Hamdaqa and Tahvildari, 2012), BDA (Frank Ohlhorst, 2013) are providing new 

opportunities for manufacturers to solve these challenges. In this context, some new concepts and manufacturing 

paradigms, such as IoMT (Zhang et al., 2015), service-oriented manufacturing (Gao et al., 2011), CMfg (Xu, 2012; 

Zhang et al., 2017d), SM (Davis et al., 2015), and industrial BDA (Lee et al., 2015a) have been proposed and used by an 

increasing number of industrial leaders.

The SM is a new, networked and service-oriented manufacturing paradigm, which evolved from, but extends beyond, 

the traditional manufacturing and service modes, and integrates many advanced technologies such as IoT, industrial 

internet, CPS (Y. Zhang et al., 2018e), CC, DM, AI, and BDA (Xu et al., 2015; Kang et al., 2016; Mittal et al., 2016). 

The SM integrates data management with process expertise to enable flexibility in physical processes to interact within 

dynamic global markets increasing the profitability of manufacturers (Davis et al., 2012; Thoben et al., 2017). In SM, all 

manufacturing resources, products, processes and services are intelligent, with open and dynamic inter-connectivity and 

interactions throughout the entire value chain. Therefore, large amounts of data for heterogeneous manufacturing 

resources and products are produced along the whole lifecycle. The data can be collected and analyzed by manufacturers 

according to their requirements for effective and dynamic lifecycle decisions, because realization of the goal of SM 

depends on autonomous and analytics-based decisions (Davis et al., 2012; Y. Zhang et al., 2018a), which in turn relies on 

the effective analyses of the massive volumes of data gathered from equipment and processes. Therefore, the BDA in SM 

becomes a critical issue. 
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In SM environment, manufacturers utilize advanced analytics technologies, such as BDA-based approaches to improve 

their efficiency and productivity, and to convert data into useful, actionable information (Lee et al., 2013). BDA also 

brings potential advantages for SM such as knowledge generation, KPI optimization, predication and feedback to product 

and process design (Nagorny et al. 2017). According to Kusiak (2017), BDA can help manufacturers to interpret the 

captured data at all stages of the product lifecycle, to improve their processes and products, and to make manufacturing 

processes smarter. It has been found that BDA can help to solve the problems of load-unbalance and inefficiency during 

deployment of a SM system D. Li et al. (2017).

By using BDA to derive value from lifecycle big data and to execute the business strategy of servitization during the 

whole lifecycle, is one of the possible future trends in creating new added-value and enhancing sustainability in a 

manufacturing enterprise (Opresnik and Taisch, 2015; Tukker, 2015). Industrial leaders need insights on: how to utilize 

BDA to exploit the real potential and value of lifecycle big data to make the whole lifecycle decision-making smarter; 

and how to integrate and apply effectively the advanced technologies of SM and BDA to enhance competitiveness and 

sustainability. Although, BDA and SM have been individually researched in academia and industry, research combining 

BDA and SM is in its infancy. Lisbon University and Manchester University jointly organized an International 

Conference on Sustainable Smart Manufacturing (S2 Manufacturing International Conference, 2016), and ASTM 

international published a journal series named ‘Smart and Sustainable Manufacturing Systems’ (ASTM International, 

2017). Articles related to similar themes were published in Procedia CIRP (Elsevier, 2012) and IFAC-PapersOnLine 

(Elsevier, 2015). All these efforts aim to apply advanced sensor, information modeling, computing and data analytics 

technologies (e.g. IoT, CPS, Cloud, AI) to foster transdisciplinary research focusing on how to make manufacturing 

systems smarter and sustainable. Despite some progress achieved, limitations exist: 1) they did not address 

‘sustainability’ in-depth using either business models or environmental perspectives; 2) they labeled ‘Sustainable Smart 

Manufacturing’ or ‘Smart and Sustainable Manufacturing’ without adequate definitions of these new terms; 3) they 

claimed to foster transdisciplinary research and innovation, with the objective of making the manufacturing system 

smarter and sustainable, but smart and sustainable aspects of other lifecycle stages were seldom addressed. In fact, 

sustainability and SM were addressed separately. 

High quality journal papers that investigated SM and sustainability in an integrated manner are rare. Therefore, a 

comprehensive literature review is required to provide theoretical foundations that can be adopted to further develop 

scientific insights in this area, and to help industrial leaders and policy makers make more ecologically and economically 

sound decisions for the short and long-term.

The traditional SM paradigm mainly emphasizes the flexibility of physical processes, with the goal of optimizing the 
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production processes and operations or maintenance processes of MOL, and responds to dynamic market (Davis et al., 

2012). However, other lifecycle stages (i.e. design stage and recovery stage) and the sustainability aspect of the whole 

processes or systems was not taken into account. As a service-oriented business strategy, servitization has been widely 

used by manufacturers to undergird their competitive advantage (Opresnik and Taisch, 2015), such as reducing 

production costs and environmental impact and improving resource efficiency. The servitization of modern 

manufacturing differs greatly from traditional approaches because of rapid developments in information and data 

analytics technologies that support the creation and delivery of products and services. 

This review investigates how manufacturers can exploit the opportunity arising from combining the key technologies 

of SM with ubiquitous servitization at all stages of product lifecycle for intelligent and sustainable production. The term 

SSM is used to encompass the processes. SSM is defined as “a new manufacturing paradigm that integrates and applies 

the latest information and data analytics technologies in operations and decision-making processes of PLM, to transform 

the traditional modes of production and operation activities of the whole lifecycle from product-driven mode to data and 

service-driven mode, and to ultimately achieve an intelligent and sustainable production.” Such integration requires 

merging the strategy of servitization with product design, manufacturing, operation and maintenance, remanufacturing, 

recycling and recovery stages of PLM. The concept, not expressed in clear form in the literature, is crucial to advance 

knowledge in this area. Implementation of SSM may help manufacturers to achieve a data-driven and service-driven 

PLM, and enable the ubiquitous connectivity, dynamic synchronization, and collaborative optimization of all lifecycle 

business processes. The SSM can help business managers to minimize resources/energy waste and to reduce or eliminate 

emissions from industrial processing, thereby making progress towards the goals of intelligent, sustainable, cleaner 

production, while fulfilling the diverse customer needs for the short and longer-term. Therefore, users of SSM have the 

objective of promoting the creation and delivery of services, reducing resource usage, degradation and pollution, and 

improving economic and environmental sustainability by utilizing information and data analytics technologies in the 

management processes of the whole lifecycle to increase the level of intelligence in decision-making. The differences and 

connections between the traditional SM and the proposed SSM are compared as presented in Fig. 1.

In comparison with the Industry 4.0 (Kagermann et al., 2013; Hermann et al., 2016) and the traditional SM, the SSM 

highlights servitization, throughout the product value chain by using advanced information, data analytics technologies, 

and global optimization of the whole PLM to help industrialists to effectively build upon the insights derived from big 

data usage. It also emphasizes the goal of improving the intelligent level of design, production, maintenance and recovery 

through the feedback and sharing of lifecycle data among all stakeholders in the supply chain. Finally, the objectives of 

minimizing resource inputs and energy wastage, as well as prevention or minimization of emissions can be achieved 
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through sustainable and long-lasting product design, intelligent maintenance and repair, and optimized upgrading, reuse, 

remanufacturing and recycling.

Sustainable smart manufacturing

Beginning of lifecycle Middle of 
lifecycle

End of 
lifecycle

Latest information and data analytics technologies

Smart manufacturing

RecoveryDesign Production Operation &
Maintenance

Optimizing and enabling flexibility in 
physical processes

Response to dynamic market

Improving economic and 
environmental aspects

Legend
Lifecycle 
stage

Goal for smart 
manufacturing

Goal for sustainable 
smart manufacturing

Technology 
application

Improving intelligence in decision-
making for the whole lifecycle 

Product-driven mode

Reuse
Recycle
Remanufacturing

Redesign

Remanufacturing/Recycle 
ReuseRedesign

Data and service-driven mode

Fig. 1. Comparison of traditional SM and SSM.

A large variety of technologies are included in SM or SSM, and due to the significant role for BDA to help industrial 

leaders to implement data-driven decisions, this paper focuses on the survey of BDA and its applications in SM or SSM 

from a lifecycle perspective. 

The paper is organized as follows: Section 2 introduces the search and screen method of the literature. Section 3 

reviews the selected literature. Section 4 presents the original framework of BDA in SSM and explores the potential 

applications and key advantages of BDA in SSM. In Section 5, current challenges are discussed and suggestions for 

future research are provided. Section 6 highlights the contributions of the paper. 

2. Literature search 

The focus of this literature review paper was based upon answering the following five questions: 

1. What are the characteristics of big data in current industrial communities?

2. What types of big data are needed or relevant in various lifecycle stages, for whom and when?
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3. How is it possible to efficiently integrate and utilize the latest technologies to make big data more useful?

4. Which technologies can be used to efficiently measure, manage, extract and interpret the big data for usage in 

these evolving systems?

5. What benefits can be gained by the involved industrial communities through applying the extracted information?

Based upon these five questions, a comprehensive literature review was performed through an iterative process of 

defining appropriate keywords, searching the literature and completing the analyses (Fahimnia et al., 2015). Nine search 

strings (Table 1) were designed to: use a broad range of keywords for comprehensively identifying the relevant literature. 

Then, the current state-of-art on corresponding topics was assessed to identify directions for future research, through 

scanning the bibliographic database, analyzing the selected literature, and building the bibliography (Fahimnia et al., 

2015; Rowley and Slack, 2004). According to Tranfield et al. (2003) and Thürer et al. (2018), a systematic literature 

searching and screening methodology was used as follows.

The Scopus database was used because of its broader coverage. To keep the number of articles manageable, the search 

strings were limited to ‘Article title, Abstract, Keywords’ (Table 1), except for the first string – (“big data” AND 

(concept OR definition)) – that was restricted to ‘Article title’ to specifically locate articles related to big data’s 

definitions. The Scopus database was queried separately by two authors in April 26, 2018, and the search for the nine 

strings resulted in identical results – a total of 3384 documents. To ensure the quality and the relevance of the documents, 

the search scope was further limited to peer-reviewed ‘Article’ written in ‘English’, published in the ‘Engineering’. This 

refined the number of document results to 604, then reduced to 552 by removing duplicates, and further to 204 by 

excluding articles not referring to sustainability or smart manufacturing. Among the 204 articles, three were excluded 

since they had no citations two years after publication (Garfield, 2007; Figueiró and Raufflet, 2015), and the full text of 

201 articles was downloaded and analyzed. In total, 76 articles were selected for detailed content analysis. The references 

of the 76 articles were checked, and 71 additional relevant documents were supplemented. This resulted in the final list 

of 147 documents that form the basis of this review paper. The searching methodologies and screening processes used in 

this study were summarized in Table 1 and Fig.2, respectively.

Table 1

Summary of searching methodologies used for this literature review paper.

Literature search strings Search 

fields

Number of 

document 

results

Limit to Number of 

refined 

document results 

“big data” AND (concept OR definition) Article title 91 Article, 

English

28
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(lifecycle OR “product lifecycle”) AND (information OR data OR “information flow” OR “data 

flow”) AND (classify OR classification)

Article title, 

Abstract, 

Keywords

369 Article, 

Engineering, 

English

46

(“big data” OR “big data analytics”) AND (architecture OR framework) AND (manufacturing 

OR “smart manufacturing” OR lifecycle) AND (sustainable OR sustainability OR cleaner OR 

environmental OR energy)

Article title, 

Abstract, 

Keywords

71 Article, 

Engineering, 

English

9

(“internet of things” OR IoT OR RFID OR “industrial internet of things” OR IIoT OR 

“industrial internet”) AND (“green manufacturing” OR remanufacturing OR manufacturing OR 

production) AND (cleaner OR sustainable OR sustainability OR energy OR resource) AND 

(consumption OR efficiency OR efficient OR saving OR economy OR economical OR reuse 

OR recycling OR productivity)

Article title, 

Abstract, 

Keywords

599 Article, 

Engineering, 

English

130

(“Cyber-physical” OR CPS OR “cyber-physical production systems” OR “cyber-physical 

sensor systems”) AND (manufacturing OR production) AND (cleaner OR sustainable OR 

sustainability OR energy OR resource OR “service-oriented”)

Article title, 

Abstract, 

Keywords

522 Article, 

Engineering, 

English

96

(“cloud-based” OR “industrial cloud” OR “Cloud computing” OR “Cloud manufacturing”) 

AND (manufacturing OR production) AND (cleaner OR sustainable OR sustainability OR 

“service-oriented”)

Article title, 

Abstract, 

Keywords

392 Article, 

Engineering, 

English

71

“data mining” AND (manufacturing OR production) AND (cleaner OR sustainable OR 

sustainability OR “service-oriented”)

Article title, 

Abstract, 

Keywords

150 Article, 

Engineering, 

English

17

“artificial intelligence” AND (manufacturing) AND (cleaner OR sustainable OR sustainability 

OR energy OR resource) AND (consumption OR efficiency OR efficient)

Article title, 

Abstract, 

Keywords

173 Article, 

Engineering, 

English

54

(“big data” OR “big data analytics”) AND (manufacturing OR (maintenance OR “supply 

chain”) AND (cleaner OR sustainable OR sustainability OR service OR management)

Article title, 

Abstract, 

Keywords

1017 Article, 

Engineering, 

English

153

Total number of refined document results 604

Total 
number 

of refined 
document 

results:
604

Duplicates 
eliminated 
(remaining
/duplicate) :

552/52

Articles removed based 
on citation counts and 

publication year 
(remaining/excluded):

201/3

After reading titles 
and abstracts 

irrelevant removed 
(remaining/irrelevant):

204/348

Articles 
selected 
after full 
reading:

76

Articles supplemented 
through checking the 
selected 76 articles’ 

references :
71

Hits 
reviewed 

in this 
paper:

147

+

Fig. 2. Summary of screening processes used for this literature review paper.

In the modern industrial environment, data are key resources for business decisions. In order to build data-driven 

decision-support models to understand/interpret the insight of data, the methods of DM and AI as well as BDA were 

explored and used. With the objective of identifying the most significant studies and to determine the relevant areas of 

current research interest, the typical methods of DM/AI/BDA, and the application areas and shortcomings of these 

methods in different lifecycle stages were outlined and summarized as documented in Appendix A. 
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3. Overview of big data in smart manufacturing

This section is sub-divided into six subsections that review the concepts of big data in addition to its data classification 

criteria, architectures of big data in SM, key enabling technologies of SM and the applications of BDA in SM. In the final 

subsection, the authors highlight the knowledge gaps. The logic of the literature review based upon five questions was 

crucial to characterize the potential of lifecycle big data. The relationships among these questions, the literature review in 

the subsections and the derived knowledge gaps are depicted in Fig.3. 

3. Overview of big data in smart manufacturing

Section 3.6: Knowledge gaps

Question 1: What are the characteristics of big 
data in current industrial communities?

Question 2: What types of big data are needed or 
relevant in various lifecycle stages, for whom and 
when?

Question 3: How is it possible to efficiently 
integrate and utilize the latest technologies to make 
big data more useful? 

Question 4: Which technologies can be used to 
efficiently measure, manage, extract and interpret 
the big data for usage in these evolving systems?

Question 5: What benefits can be gained by the 
involved industrial communities through applying 
the extracted information?

Section 3.1: Concepts of big data

Section 3.2: Classification of big data 
from the perspective of product 
lifecycle

Section 3.3: Architecture of big data 
in smart manufacturing

Section 3.4: Key enabling 
technologies of smart manufacturing

Section 3.5: Application of big data 
analytics in smart manufacturing

The 1st knowledge gap
(System architecture)

The 2nd knowledge gap
(Integrated application of the 

key technologies)

The 3rd knowledge gap
(Management strategies)

The 4th knowledge gap
(Operation strategies)

Focus on     big data analytics

Questions Overview
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Fig.3. Relationships among the five questions, the literature review in the subsections and the knowledge gaps addressed 

in this literature review paper.

3.1 Concepts of big data

The most cited definition of big data includes the 3Vs (Volume, Variety, and Velocity) theory introduced by Laney 

(2001), but organizations and researchers may have different concepts (Table 2). For instance, the IDC emphasized that 

big data should include ‘Value’ (Gantz et al., 2011), and IBM claim that big data should also have ‘Veracity’ 

(Zikopoulos et al., 2013). Two similar definitions were introduced by MGI (Manyika et al., 2011), Mashingaidze and 

Backhouse (2017) and Daki et al. (2017). 

Definitions, technologies, modeling approaches and research challenges of big data from both industry and academic 

fields were discussed in the literature (Costa and Santos, 2017; Gandomi and Haider, 2015; Watson, 2014). In these 

articles, the characteristics of big data were analyzed by using some business cases from leading technology companies. 

The authors found that the popular concepts of big data were focused on predictive analytics and structured data. The 

largest component of big data, which is unstructured and is available as audio, images, video, and unstructured text was 
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ignored by the leading technology companies. Finally, focused on the data in unstructured format, analytical methods and 

tools were discussed and recommended. Typical definitions of big data are presented in Table 2. 

Table 2 
Six representative definitions of big data.

Authors/organizations Definitions or characteristics

Laney (2001) Characterized by 3Vs theory, namely volume, variety, and velocity. Volume: with the generation and collection of masses 

of data, data scale becomes increasingly big; Velocity: timeliness of big data, specifically, data collection and analysis 

must be rapidly and timely conducted; Variety: the various types of data, which include semi-structured and unstructured 

data as well as traditional structured data.

Gantz et al. (2011) Describes a new generation of technologies and architectures, designed to economically extract value from very large 

volumes of a wide variety of data, by enabling the high-velocity capture, discovery, and/or analysis.

Manyika et al. ( 2011) Refers to datasets whose size is beyond the ability of typical database software tools to capture, store, manage, and 

analyze.

Mashingaidze and Backhouse 

(2017); Daki et al. (2017)

Includes data sets with sizes beyond the ability of commonly used software tools to capture, curate, manage, and process 

data within a tolerable elapsed time.

NIST (2012) Means the data of which the data volume, acquisition speed, or data representation limits the capacity of using traditional 

relational methods to conduct effective analysis or the data which may be effectively processed with important horizontal 

zoom technologies.

Zikopoulos et al. (2013) Big data contains four dimensions, namely volume, variety, velocity and veracity. Veracity: the unreliability and 

uncertainty inherent in some sources of data.

3.2 Classification of big data from the perspective of product lifecycle

Classification criteria of big data can highlight its attributes of interest and value to manufacturers. For example, what 

types of data are needed or relevant in various lifecycle stages, for whom and when? Data classification criteria can be 

applied as data preprocessing facets, because they can support the identification of required product-related data for 

lifecycle data tracking and feedback (Xu et al., 2009). They can be used to help industrialists to make decisions during 

different lifecycle stages (J. Li et al., 2015). 

To clarify the multiple roles of data standards in PLM support systems and SCM, Liao et al. (2015) and Madenas et al. 

(2014) classified product-related data into spatial data, functional data and lifecycle data. A general model of data 

exchange between producers and consumers was developed to determine when to incorporate the available data, and to 

identify a suite of standards needed for supporting the exchange of product, process, operations and supply chain data. To 

facilitate appropriate data exchange and integration among OEMs and associated suppliers, Yang and Eastman (2007) 

categorized the lifecycle data as exchanging and interoperable data, and proposed a rule-based subset generation method 

for product data modeling. The product lifecycle-related data were classified into generic types by Bouikni et al. (2008), 

including, product definition, product history, and best practice. Based on these researchers’ findings, a three-

dimensional data classification model was proposed by Xu et al. (2009). They were data changeability (static and 
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dynamic), data characteristics (structured, semi-structured and unstructured), and product lifecycle stages (i.e. BOL, 

MOL and EOL). The authors recommended that the data classification standard to be firstly used to information structure 

modeling, and secondly to confirm which information can be acquired via wireless technology in different lifecycle 

stages. In order to integrate heterogeneous information systems in creating innovative products, the data classification 

standards of product data and product meta-data were discussed by Zehtaban et al. (2016). To achieve sustainable 

production, Kurilova-Palisaitiene et al. (2015) classified the product lifecycle data into six types, which included, product 

design specifications, manufacturing specifications, service specifications, original product quality assurance, core 

quality assurance, remanufactured product quality assurance. 

3.3 Architecture of big data in smart manufacturing

The system architecture can be used to describe the layout of the whole system and the relationships among all 

components (Vikhorev et al., 2013). It can also be used to simplify the complex system management environment and to 

describe the complex procedures of lifecycle data sharing and knowledge interaction, and to ensure the validity of the 

entire system. 

With the objective to explore the capacity of big data in product service, a framework of big data strategy in 

servitization for manufacturing enterprises was proposed (Opresnik and Taisch, 2015). Its impact on enterprises’ SCA 

and value-creating were analyzed. By combining the design structure matrix and cladistics analysis, an architecture for 

minimizing energy consumption of a manufacturing system was synthesized (AlGeddawy and ElMaraghy, 2016). 

Results showed that energy consumption of the manufacturing system can be minimized throughout the production 

planning by system design. Dubey et al. (2016) performed an extensive literature review to identify different factors that 

enable the achievement of world-class sustainable manufacturing through big data. On this basis, a conceptual 

framework of sustainable manufacturing was proposed and tested by using a big data scenario. The factors that can 

facilitate the realization of sustainable manufacturing for academia and practice were emphasized. Based on data from 

service parts managers, a framework for application of big data in smart management of service parts was constructed 

and tested (Boone et al., 2017). By using that framework, the upstream challenges related to acquisition of service parts 

along with the downstream challenges related to service parts forecasting were analyzed. In view of existing research on 

the architecture of big data in manufacturing only focusing on one stage of the lifecycle (e.g. production stage of BOL 

and operation or maintenance stage of MOL), making difficult to effectively promote the improvement of lifecycle 

decision-making and the implementation of the CP strategy, Zhang et al. (2017b, 2017c) proposed an architecture of 

BDA for PLM to aid manufacturers to make better lifecycle and CP decisions. In this architecture, product servitization 
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and BDA were effectively integrated. The effectiveness of the proposed architecture was tested via the analysis of 

processes of a turbo machinery manufacturer. Four managerial implications derived from the proposed architecture for 

the marketing department, the R&D department, the production department and the service department, were 

recommended to guide manufacturers to make better CP-related decisions in the whole lifecycle. To minimize energy 

and material usage while maximize sustainability of SM system, a big data driven sustainable manufacturing framework 

for condition-based maintenance prediction was developed (Kumar et al., 2018). In the framework, the condition-based 

maintenance optimization method was used to optimize the maintenance schedule and the backward feature elimination 

approach was used to eliminate the uncertainty of the remaining life predictions. In order to integrate IoT-based energy 

management data and company's existing information systems, a big data framework that including data collection, data 

management and data analytics layer was proposed (Bevilacqua et al., 2017). The proposed framework was applied in an 

Italian manufacturing company to assess its impact on improving energy efficiency. A framework of digital twin-driven 

product design, manufacturing and service with big data was investigated by Tao et al. (2018) and Zhuang et al. (2018) to 

help industry leaders to enhance the level of efficiency, intelligence, sustainability in product design, manufacturing, and 

service phases.

3.4 Key enabling technologies of smart manufacturing

Key enabling technologies of SM were developed to address data acquisition, transmission, storage, processing, 

analysis, knowledge and pattern discovery, which are major concerns in application of big data in SM. These enabling 

technologies can be used for maintaining the efficiency and sustainability of the SM system by providing reliable data 

and valuable insights for industrial leaders. 

3.4.1. Internet of things and industrial internet

The IoT technologies have been widely applied in modern manufacturing, especially, in industrial emission and energy 

consumption monitoring (Hu et al., 2017; Martillano et al., 2017; Tao et al., 2014b). Due to the potential on data sensing, 

IoT was used to track the lifecycle data to improve recycling efficiency (Luttropp and Johansson, 2010; Tao et al., 2016) 

and to enhance product reuse rates (Ness et al., 2015). Ferrer et al. (2011) and Y. Zhang et al. (2018b) found that the 

implementation of IoT technologies can improve the operation efficiency of remanufacturing by at least 30%. In 

conjunction with sustainable production and green manufacturing, the IoT technologies were deployed at the machine 

and production-line level to collect the real-time energy consumption data of production processes. Subsequently, the 

IoT-based energy management system was developed and tested to improve energy-aware decisions of manufacturing 
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companies (Yan Li et al., 2017; Shrouf and Miragliotta, 2015). The results showed that energy managers of a 

manufacturing company can utilize the IoT in a benefit-driven manner. Meanwhile, the method can also be used to 

address company’s energy management and sustainable production practices. Jensen and Remmen (2017) analyzed how 

IoT technology can help OEMs (e.g. automobile, aircraft and ship manufacturers) to stimulate and implement high 

quality EOL product management strategies, and to support circular economy. The role of IoT in ensuring flexibility and 

resource efficiency for smart production system was investigated by Waibel et al. (2017). The potential smart innovations 

of IoT in technical, economic, social and environmental elements were discussed. Y. Zhang et al. (2018d) and J. Wang et 

al. (2018) explored the problems of multi-objective flexible job shop scheduling based on real-time IoT manufacturing 

data, and found that the usage of real-time IoT data for job shop scheduling can reduce the makespan, the total workload 

of machines and the energy consumption of the manufacturing system. The authors recommended that the IoT 

technology can contribute to sustainable CP of the manufacturing industry. Zuo et al. (2018) proposed a novel approach 

for product energy consumption evaluation and analysis based on IoT technologies, and tested its effectiveness by using 

a case of a product’s design and manufacturing processes. The results showed that the proposed approach can be used to 

enhance the intelligence of energy consumption evaluation and analysis, and to reduce energy consumption in product’s 

design and manufacturing processes. An IoT-enabled real-time energy efficiency optimization method for energy-

intensive manufacturing enterprises was explore by (W. Wang et al., 2018). Through a case study, the authors found that 

the IoT-enabled solution can be used to enhance energy efficiency and reduce environmental impacts.

As a highly integrated technology of advanced computing and analytics and sensors, the industrial internet was 

introduced by GE in 2012 to describe new efforts where industrial equipment such as wind turbines and jet engines were 

connected via networks designed to develop and share data and data processing for energy and transportation-based 

industries (Evans and Annunziata, 2012; Kelly, 2013). This approach aims achieving unification of industrial machines 

and software highlighting the similarity toward IoT and CPS as a technology focused framework (J. Q. Li et al., 2017). 

For example, through industrial internet, GE collects sensor readings from aircraft engines to optimize fuel consumption 

under diverse conditions (General Electric, 2014). Based on industrial internet, a new web-based system for real-time 

collaborations in adaptive manufacturing was developed (L. Wang, 2015). An assembly cell was used to verify and test 

the feasibility and the performance of the developed system. The results showed that the new system consumed less than 

1% of network bandwidth than traditional camera-based methods, while the system can enhance the sustainability of 

manufacturing operations in decentralized dynamic environments. 

Some industrial developers focused on connecting the physical and virtual world through the industrial internet and 

IoT to facilitate communication among connected entities (Gubbi et al., 2013). In this scenario, the term IIoT (Beier et 
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al., 2018; Xu et al., 2014) was coined aiming to achieve the interconnectivity of industrial assets, such as machines, tools, 

and logistical operations. With the increased organizational complexity, communications among different production 

workers significantly impact the productivity of manufacturing organizations, especially for the SM environments. To 

determine the most economical communication technologies that can enhance productivity and sustainability in industry, 

Kareem and Adekiigbe (2017) examined traditional and modern communication technologies and their comparative 

advantages over one another in their adoption in manufacturing organizations. The findings suggested that the 

enhancement of productivity and the reduction of costs could be fully achieved by modern communication technologies 

(e.g. mobile-internet and industrial internet). One objective for adopting IIoT was to reduce resource consumption and 

fossil-carbon emissions of industrial systems. For this objective, a green IIoT architecture was proposed and tested to 

achieve energy-saving and to prolong the lifetime of the whole system (K. Wang et al., 2016). The authors designed a 

sleep scheduling and wake-up protocol to predict sleep intervals. Based on the predicted sleep interval, a simulation 

experiment for an activity scheduling mechanism to switch nodes to sleep/wake modes when required was developed to 

ensure the usage of the entire system resources in an energy-efficient way. The results documented significant 

advantages of the IIoT architecture in resource and energy consumption.

3.4.2. Cyber-Physical System

The term CPS refers to the tight conjoining of and coordination between computational and physical resources with 

adaptability, autonomy and usability (Watanabe et al., 2016). In addition to CPS, there are several similar concepts, such 

as, CPPS (Miranda et al., 2017; Monostori, 2014; Wright, 2013), and CPSS (Berger et al., 2016). 

In the context of industrial big data, the problems of modeling and virtualization for CPS were discussed by 

(Babiceanu and Seker, 2016). Lee et al. (2015b) proposed and tested guidelines for implementation of a CPS architecture 

in Industry 4.0 environment for integrating CPS in SM. The architecture was applied to machine tools in a production 

line, and the data and information flow were analyzed in detail. The authors provided viable guidelines for manufacturers 

to implement CPS to enhance product quality and system reliability with intelligent manufacturing equipment. The 

authors found that the CPS architecture not only can guarantee near zero downtime production, but also provide 

optimized production planning and inventory management plans. Additionally, focused on the trends of development of 

industrial big data, the impacts of CPS on maintenance and service innovation, and on the service-oriented manufacturing 

paradigm were investigated (Herterich et al., 2015; Lee et al., 2015a). To provide insights into addressing water resource 

sustainability challenges for industrial activities (e.g. manufacturing and energy production areas), an overview of water 

resource CPS for sustainability from four critical aspects (sensing and instrumentation, communications and networking, 
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computing and control) was conducted by Wang et al. (2015). Recently, the sustainability of CPS-based production 

system (Song and Moon, 2017; Watanabe and Silva, 2017), CPS-based self-adaptive intelligent shop-floor (Zhang et al., 

2017a), and CPS and big data enabled energy efficient machining optimization methods (Liang et al., 2018), were 

assessed and investigated. The authors found that the CPS-based approaches and technologies can be used to achieve 

improved, concerted function of collaborating systems, with enhanced adaptivity and autonomy of automation systems. 

Based on real-time manufacturing data, a framework of smart injection molding CPS was proposed (Lee et al., 2017). 

The framework integrated different types of data acquisition methods and decision-making rules. As a result, the authors 

suggested that the proposed framework can be used to enhance the competitiveness, sustainability and production 

performance of injection molding industry, and to support the construction of a smart factory.

3.4.3. Cloud-based technologies

Cloud computing was defined as ‘‘a model for enabling ubiquitous, on-demand network access to a shared pool of 

configurable computing resources that can be rapidly provisioned and released with minimal management effort or 

service provider interaction’’ (Mell and Grance, 2009). Cloud manufacturing as the manufacturing version of CC extends 

the philosophy of ‘everything is a service’ by adding new concepts as ‘manufacturing resources as a service’ (Tao et al., 

2014a; Xu, 2012). Additional applications of cloud-based technologies in manufacturing have been developed by many 

researchers: the cloud-based approach for remanufacturing (Wang et al., 2014; Wang and Wang, 2014), cloud-based 

design and manufacturing (Stewart, 2006; Wu et al., 2015), and cloud-based energy-aware resource allocation approach 

and sustainable energy selection model (Peng and Wang, 2017; H. Zheng et al., 2017). 

Effective management of the knowledge acquired during historical product design and development processes is one 

of the challenges facing many manufacturing enterprises. To address this challenge, a cloud-based product design 

knowledge integration framework was proposed by Bohlouli et al. (2011). The knowledge integration services can be 

provided for the collaborative product design procedure, and as a result, the sustainable and innovative product design 

and development pattern can be achieved. To address the challenges for managing the distributed manufacturing 

resources in supply chains, a cloud-based and service-oriented MES was developed (Valilai and Houshmand, 2013; Helo 

et al., 2014) showing that collaboration and data integration inside distributed manufacturing were essential for success 

of supply chain solutions. Yue et al. (2015) developed a service-oriented industrial cloud-based CPS model, which 

integrated cloud technologies and CPS to improve the business services in Industry 4.0. With the support of the cloud 

and infrastructure platform as well as service application, industrial cloud-based CPS can improve manufacturing 

efficiency and enable a sustainable industrial system and more environmentally friendly businesses. The term of 
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industrial cloud robotics was proposed to integrate the industrial robots resources worldwide and to provide 

manufacturing services for the end-users based upon a combination of cloud-based technologies and robotics (Liu et al., 

2016). Energy consumption optimization for industrial cloud robotics was investigated, and a framework and its enabling 

methodologies of industrial cloud robotics towards sustainable manufacturing were developed. The authors suggested 

that the framework can be used to support energy-efficient services of industrial cloud robotics, and to realize sustainable 

manufacturing worldwide. On this basis, focused on the unified description of sustainable manufacturing capability of 

industrial cloud robots, a hybrid logic description method and an interval-state description method were proposed to 

jointly present the energy consumption during the industrial robots’ processing (Y. Zhao et al., 2017).

3.4.4. Data mining

Due to the important role of knowledge acquisition from manufacturing databases, DM is being increasingly widely 

used in industry. A comprehensive analysis of DM applications in manufacturing and product quality improvement was 

conducted by Choudhary et al. (2009) and Köksal et al. (2011). Recently, the applications of DM in different lifecycle 

stages, such as product design (Kusiak and Smith, 2007), production (Cheng et al., 2018a), maintenance (Bennane and 

Yacout, 2012), fault diagnosis (Sim et al., 2014), service (Karimi-Majd and Mahootchi, 2015), and recycling (Y. Wang et 

al., 2016) were implemented. 

The DM has also been attractive to many researchers on implementation of sustainable production and consumption 

strategies in manufacturing. Marwah et al. (2011) proposed an automated LCA approach based on DM to help the 

development of sustainable products. The authors recommended that manufacturers can use this approach to assess their 

design’s sustainability in comparison with other designs. A supply chain quality sustainability DSS based on the 

association rule mining method was explored to support managers in food manufacturing firms to formulate logistical 

plans, and to maintain the quality and sustainability of the food supply chain (Ting et al., 2014). During the production 

stage, a DM method combining a SVM with a GA was developed by (J. Li et al., 2017) to quantitatively evaluate the 

effectiveness of CP. The proposed method was verified through a comparison in application, and the results showed that 

the GA-SVM method is more accurate and efficient than the back-propagation ANN. This study also suggested an 

effective assessment method for small samples of CP and provided a guideline for enterprise management on the 

implementation of CP for vanadium extraction from stone coal. Lieber et al. (2013) developed a systematic framework 

based on DM for predicting the quality of products in interlinked manufacturing processes using a rolling mill case study. 

The supervised and unsupervised DM methods were conjointly applied to identify the quality-related features and 

production parameters. The authors found that the proposed method contributed to achieve sustainable and energy-
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efficient manufacturing processes. Pang (2015) designed and tested an early warning system for the quality of complex 

products based on DM and NN theory aiming to reduce resource waste and increase productivity. The author suggested 

that the designed warning system could provide decision information that would not only help to improve existing 

products quality, but also aid in new product design. During the maintenance stages, the NN algorithms were applied to 

identify bearing faults in wind turbines (Kusiak and Verma, 2012), and an AD approach was tested to provide early 

failure warnings in rotating machinery (Purarjomandlangrudi et al., 2014). To enhance efficiency and reduce energy 

consumption of industrial robots in product disassembly processes, the industrial robot’s disassembly capability was 

dynamically modeled by using the association rules mining algorithm (Z. Zheng et al., 2017).

3.4.5. Artificial intelligence

In recent years, diverse applications of AI have helped managers to make more effective decisions in manufacturing 

due to their capability to intelligently recognize and learn business models (Simeone et al., 2016). An AI-based CP 

evaluation system was developed to simplify the evaluation process of water consumption and environmental impacts of 

surface treatment facilities (Telukdarie et al., 2006). The potential benefits of AI for hybrid flow shop floor scheduling 

and energy consumption optimization were explored by Luo et al. (2013) and Ilsen et al. (2017), and a review of AI 

applications for supplier selection was conducted by Chai et al. (2013). Findings from these papers showed that most of 

the applications were focused on testing the algorithm for benchmarking or solving problems. Laalaoui and Bouguila 

(2014) and Çaliş and Bulkan (2015) assessed the AI application to pre-run-time scheduling in real-time systems and NP-

hard job shop scheduling. Orji and Wei (2015) investigated a novel modeling approach that integrates fuzzy supplier 

behavior information with system dynamics simulation technique to help manufacturers to select the best possible 

sustainable supplier and to enhance the manufacturers’ sustainability. The results of a simulation experiment showed that 

an increase in the rate of investment in sustainability by different suppliers causes an exponential increase in their total 

sustainability performance. Suganthi et al. (2015) applied fuzzy logic for modeling renewable energy systems to 

precisely map and optimize the energy systems. From the perspective of energy conservation, a new AI model, the multi-

gene genetic programming, based on orthogonal basis functions was proposed to identify the hidden relationships 

between the energy consumption of the milling process and the input process parameters (Garg et al., 2015). Sensitivity 

and parametric analyses were conducted to validate the robustness of the model by revealing the potential relationships 

of energy consumption with respect to a set of input variables. The authors emphasized that, from these discovered 

relationships an optimum set of input settings for milling process can be obtained (e.g. cutting speed, feed rate and depth 

of cut). An AI-based DSS was developed by Shin et al. (2015) to improve the sustainability performance of 
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manufacturing processes. Two case studies were used to show how to allocate resources at the production level and how 

to select process parameters at the unit-process level to achieve minimal energy consumption. Uncertainties in both the 

machine and the operating environments made the physics-based energy prediction models difficult to predict the energy 

consumption of the target machine reliably. To address this issue, Bhinge et al. (2016) and Oses et al. (2016) explored a 

modeling method based on the nonparametric machine-learning technique to optimize the energy-efficiency of a 

machining process. Commercial applications of AI were explored by Jacques et al., (2017) and McKinsey & Company 

(2017) to deliver new values such as smarter R&D and real-time forecasting, targeted sales and marketing, optimized 

production and maintenance to companies.

3.4.6. Big data analytics

BDA is the process of examining large and varied data sets to uncover hidden patterns, unknown correlations, market 

trends, customer preferences and other useful information that can help organizations make more-informed business 

decisions (Abell et al., 2017; TechTarget, 2012), to improve sustainability and to drive the society towards the circular 

economy (Soroka et al., 2017). Applications of BDA have attracted attention from industry and academy due to the 

capability to provide valuable patterns and knowledge to increase BI, explore potential markets and improve operational 

efficiency (Lamba and Singh, 2017; Zhong et al., 2016). By deploying the BDA in the Cloud, conceptual frameworks of 

service-oriented DSS (Demirkan and Delen, 2013) were explored to improve QoS of the cloud. A BDA model was 

presented by Shin et al. (2014) to predict the sustainability performance, especially for power consumption of the metal 

cutting SM system. Furthermore, focused on the environmental concerns and the energy efficiency of modern industrial 

sector, a framework of energy monitoring and energy-aware analytics information system based on BDA was designed 

and tested (Zampou et al., 2014). To fully utilize the big data from production and energy management database to 

achieve a higher level of sustainability, manufacturers need methodologies for analyzing, evaluating, and optimizing 

sustainability performance metrics of manufacturing processes and systems. In this context, Shao et al. (2017) introduced 

a systematic decision-guidance methodology that used sustainable process analytics formalism and provided an step-by-

step guidance for users to carry out sustainability performance analysis. The state-of-the-art and application landscape of 

BDA, as well as the impact of BDA on sustainable and green SCM and organizational performance were thoroughly 

investigated (Gunasekaran et al., 2017; Kaleel Ahmed et al., 2018). In these articles, research questions such as: In what 

areas of SCM was BDA utilized? At what level of BDA was used in SCM? What types of BDA models were used? were 

investigated in detail. Recently, focused on improving resource usage efficiency, the potentials of BDA in natural 

resource management and CP were investigated (Song et al., 2017; Zhang et al., 2017c). 
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These key technologies of SM can be used for maintaining the efficiency and sustainability of SM systems. They can 

also be integrated and applied to facilitate the implementation of sustainable production and consumption strategies 

(Kusiak, 2017; Thoben et al., 2017). However, few studies have been done regarding effective integration and 

application of various key technologies of SM to implement these two strategies, not to mention even the use of these 

technologies for supporting the SSM paradigm.

3.5 Application of BDA in smart manufacturing 

Manufacturers are being flooded by huge amounts of data, since various sensors, electronic devices, and digital 

machines are used in production lines and shop-floors (Zhong et al., 2017). According to MGI, companies embracing 

BDA are able to outperform their peers (Manyika et al., 2011). A survey from the EIU reported that many new 

opportunities and advantages can be created and gained through harnessing big data, in which the most compelling is 

increased operational efficiency (Fig.4). It has been estimated that the combination of BDA and lean management could 

be worth tens of billions of dollars, in improved profits for large manufacturers (Dhawan et al., 2014; Ge and Jackson, 

2014). 

Fig. 4. New opportunities that BDA provides for commercial organizations to improve efficiency and effectively. Data 

source from (EIU, 2011; Tankard, 2012).

3.5.1. Illustrative examples 

From the perspective of illustrative examples, Komatsu Ltd., a Japanese construction equipment manufacturer, has 
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used BDA to assess the health status of the diesel engine component, and to provide remote fault prognostics services for 

its end-users (Lee et al., 2014). Every day, Siemens uses big data from 100,000 measurements in power plants around the 

world to implement remote diagnostic services to analyze the operational behaviors (Siemens, 2014). Similarly, Ramco 

Cements Limited, an Indian flagship manufacturer, leveraged BDA to make intelligent business decisions on product 

development and logistics management (Dutta and Bose, 2015). The SPEC, a leading eyeglasses manufacturer in China, 

analyzed the big data that were derived from customer feedback to provide ideas for new product innovations (Tan et al., 

2015). Shaanxi Blower Group, a specialized turbo machinery manufacturer in China, established a product health 

management center that used sensor collected lifecycle big data to improve their service quality (Zhang et al., 2017c). 

Boeing’s AHMS has been used to collect and analyze real-time big data of in air airplane operations and to notify ground 

crews of potential maintenance issues before landing (Boeing, 2017). To improve the sustainability of their supply chain, 

a Taiwanese light-emitting diode industry and a sanitary appliances manufacturer in China, used BDA to identify 

decisive attributes of SCRU, and to enhance their capability of GSCM (K. J. Wu et al., 2017; R. Zhao et al., 2017). 

3.5.2. Theoretical research

From the perspective of theoretical research, Hofmann (2015) reported how BDA levers can reduce the bullwhip effect 

of supply chains, and which of them has the highest potential to do so. The BDA was utilized to address the challenges in 

industrial automation domain due to its capability of handling large volume of quickly generated data (Leitão et al., 

2016). Hazen et al. (2016) and Papadopoulos et al. (2017) explored the role of BDA for supply chain sustainability, and 

Batra et al. (2016) and Jacobson and Santhanam (2016) highlighted its role on speeding up delivery time and improving 

R&D for semiconductor industry. To fulfill the potential of energy big data and to obtain insights to achieve smart energy 

management, a process model of BDA-based for smart energy management was proposed by Zhou et al. (2016). 

Furthermore, the impact of BDA on world-class sustainable manufacturing involving green product design and green 

production was explored by Dubey et al. (2016). In the SM environment, a smart spare parts inventory management 

system was proposed to establish transparency between manufacturers and suppliers and to reduce the inventory costs 

(Zheng and Wu, 2017). Through BDA, manufacturers can prepare spare parts for the right machine at the right time with 

the right quantity, and also optimizing the fuel use efficiency and the real-time route of spare parts transportation for 

suppliers.

3.6 Knowledge gaps

With a focus on SSM and the previously highlighted literature, the following knowledge gaps for SSM are identified 
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and described:

 Firstly, from the perspective of system architecture of big data in SM (Section 3.3), many researchers only 

focused upon one stage of the lifecycle (e.g. production stage of BOL and operation or maintenance stage of 

MOL). According to this analysis, to fulfill the SSM paradigm, a system architecture that covers the whole 

lifecycle stages is imperative. There is a lack of a holistic architecture for SSM paradigm that can be used to 

describe the complex procedures of the whole lifecycle data sharing and knowledge interaction, and the relations 

among various lifecycle stages. 

 Secondly, there are various key technologies of SM, but as mentioned in the definition of SSM, to achieve the 

SSM paradigm, all these technologies should be integrated and applied in the operations and decision-making 

processes of the whole lifecycle. However, almost all research was focused on applying one or two of the latest 

technologies to improve and optimize the decision-making processes of specified lifecycle stages (Section 3.4). 

The research on effective integration and application of various key technologies of SM in the whole lifecycle 

decision-making processes to implement sustainable production and consumption strategies, and further to 

support the SSM paradigm was seldom conducted (Section 3.4.6). 

 Thirdly, large amounts of process control and product performance data is generated in SM environment. As 

highlighted by Kusiak (2017), it is important to extract useful and valuable information from big data, and one of 

the most important methods in SM is BDA (Section 1). The BDA is also a promising method that can effectively 

facilitate the realization of the SSM paradigm, through deriving value from lifecycle big data, by implementing 

servitization strategies during the whole lifecycle, and by creating new added-value enhancing sustainability in 

manufacturing enterprises (Section 1). However, most research on BDA-enabled smart decision-making only 

involved limited lifecycle stages (e.g. production, maintenance, service stages), and do not focus upon usage of 

BDA in decision-making processes of the whole lifecycle to support the SSM paradigm (Section 3.5). Therefore, 

the third knowledge gap is that, in terms of management strategies, the research to effectively utilize the power of 

BDA for smarter decision-making processes of the whole lifecycle was rarely performed. 

 Fourthly, the term SSM was derived from the traditional concept of SM. Because of its infancy, the SSM does 

not yet provide manufacturers with concrete operations strategies to enhance the visibility of their operations and 

the performance of all lifecycle business processes (Wamba et al., 2015). The insight into how to control and 

optimize the operations of the whole lifecycle management processes and service provision based on SSM is 

unavailable. However, this insight is required for implementation in industry and may have significant impact on 

the whole lifecycle’ smarter decision-making and sustainability. Therefore, the insight related to how to control 
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and optimize the operations of the whole lifecycle management processes and service provision, was identified as 

the fourth gap of SSM that is derived from the first three gaps (that will ultimately affect the effective 

implementation of SSM) and focuses on the operations strategies for SSM.

4. The framework of BDA in SSM

The overview presented in Section 3 was the basis for the conceptual framework, which was designed to help 

optimizing the lifecycle processes for sustainable production and CP. The framework is the first step to fill in all the 

knowledge gaps identified and presented in Section 3.6. This framework can be used as a guideline to select the most 

relevant lifecycle stages that affect the sustainable production of products of a specific enterprise, based on analysis of 

the available lifecycle big data. In this section, firstly, the framework of BDA in SSM is described. Then, using the 

proposed framework, potential applications and their key advantages were analyzed.

4.1 The conceptual framework of BDA in SSM

The goals of SSM for using the emerging information technologies and advanced analytics are: (a) to reduce resource 

waste; (b) to decrease environmental impacts; (c) to increase digitization level; (d) to achieve global intellectualization in 

manufacturing and service. To achieve these objectives in PLM, a conceptual framework of BDA in SSM was tested as 

presented in Fig. 5. This framework consists of four components from the perspective of product lifecycle stages: (a) 

intelligent design; (b) intelligent production; (c) intelligent maintenance & service; (d) intelligent recovery. For each 

component, the important elements (e.g. data flows, knowledge flows, main lifecycle stages, data sources and key 

lifecycle data) are described and analyzed in detail. The potential applications that will affect the realization of SSM are 

also involved in the framework. In subsections 4.1.1 to 4.1.4, the relationships among the key elements and the potential 

applications are briefly presented and analyzed.

What needs to be emphasized is that, within this framework, the sharing and feedback of lifecycle data not only can be 

achieved in their own interiors, but also can be realized among all lifecycle stages. The potential applications of this 

framework can only be achieved in every stage, when data sharing and feedback from other stages are realized. It is 

evident that as a result of sharing and feedback of data among all lifecycle stages, industrial leaders will be able to make 

more accurate and reliable lifecycle decisions, improving and optimizing the manufacture’ production and management 

processes and facilitating the effective implementation of improvement options. 
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Fig. 5. Conceptual framework of BDA in SSM.

4.1.1. Intelligent design

The intelligent design component comprises market analysis, product and service design. In the market analysis stage, 

product demand data provided by customers through Internet can be collected and analyzed. During product and service 

design stage, the RFID technology can be used for the management of technical documents (Jun et al., 2009). For 

example, the passive RFID tags attached to all technical documents enable technicians to manage huge numbers of 

technical documents in a systematic way. In addition, existing EISs such as CAD, CAE, and CAPP can provide valuable 

data support for product and service design. Therefore, the main data sources for this component are the Internet, IoT and 

EISs, while the key lifecycle data involves product performance indexes, historical product design and customer 

demands.

4.1.2. Intelligent production

The intelligent production component involves procurement, product production, and equipment management. In 
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product production stage, all kinds of manufacturing resources (e.g. machines, operators, trolleys, etc.) are deployed with 

smart devices (e.g. RFID tags and readers, smart sensors and meters, etc.) to achieve a given degree of intelligence. The 

key parts are also equipped with smart devices that serve as mobile memory for the smart products, playing important 

roles throughout the assembly process and retained for subsequent processes of the lifecycle (e.g. logistic, maintenance, 

recycle, etc.). For equipment management, equipment fault diagnosis will influence the product precision and quality 

directly. The ERP, MES, PDM system, and fault diagnosis system can provide large amounts of data for intelligent 

production. These data are derived from EISs, IoT and sensors. In addition, the product quality, historical fault records, 

material delivery and energy consumption data can enhance effectiveness of sustainable production. For example, the 

product quality and historical fault records data can be combined and analyzed to firstly predict the failure and lifetime of 

the products in use, and secondly to assist the manufacturer to make a predictive maintenance planning. As a result, the 

reuse rate and use intensity of the products are improved. This can obviously reduce the total number of material and 

energy consumption. Furthermore, the material delivery data can be used to plan and suggest the real-time optimization 

route and to enhance the energy efficiency of shop-floor material handling.

4.1.3. Intelligent maintenance & service

The intelligent maintenance & service component consists of product operation and maintenance stages. Based on the 

deployment of the smart devices for products, real-time operation status data of smart products can be sensed and 

captured while used by the customers. For some products, not suitable for embedding smart devices, external smart 

devices are installed during the installation and debugging stages. The product operation stage mainly involves customer 

service (e.g. online consultation and personnel training) and product support (e.g. product quality monitoring and regular 

inspection), including corrective and predictive maintenance in product maintenance stage. Therefore, the real-time 

operation status data, product quality monitoring data, historical fault data and customer evaluation data that come from 

IoT, sensors, customer feedback and monitoring system present high potential for customer service, product support, and 

maintenance.

4.1.4. Intelligent recovery

In the intelligent recovery component, the only focus is how to make product recovery decisions. Owing to the 

configuration of the smart devices, the data related to product lifecycle history (e.g. remaining lifetime, degradation 

status and environmental factors) can be accurately gathered at the recycle stage. These data can play an important role in 

product recovery decision-making (e.g. reuse, remanufacturing, repair, recycle and disposal) and in reverse logistics 

planning. For example, based on the data of historical degradation status of a product, the identity information of RFID 
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tags and smart sensors can provide unique identification code for subsequent classification of defective parts, which are 

separately sent to different take-back centers for further inspection and analysis. These historical IoT and sensor records 

can help inspectors to estimate costs and benefits of the various recovery operations within some constraints such as 

environmental regulations and product residual lifetime.

The following four steps can be used as a reference framework to select relevant lifecycle stages that impact the 

sustainable production of a given enterprise providing the enterprise manager the possibility to implement the 

framework. For clarification, no obligatory usage of the framework as a standard in industry is meant in this article.

1) According to different application requirements, the relationships presented in the framework will assist the 

managers to identify the main lifecycle stages that have significant effects on SSM. 

2) Based on the identified lifecycle stages, the key indices and parameters that may impact the performance of a 

specified lifecycle’s business processes can be identified. 

3) According to the key indices and parameters that need to be improved and optimized, suitable lifecycle data, 

model and the appropriate algorithms can be selected and used to conduct the BDA. 

4) Following the knowledge flow, including rules discovered through BDA, can provide important insights for 

managers to meet the application requirements to achieve SSM.

The major stages and potential applications of BDA in SSM are described in Fig.5. 

4.2 Potential applications and key advantages of BDA in SSM

Due to the increasing usage of leading-edge technologies in the modern manufacturing environment, data such as 

metrics for production processes, product operation and maintenance, etc., can be collected throughout the whole 

lifecycle. Through combining and applying BDA to all these lifecycle data, manufacturers can derive benefits, which are 

described in the following sections. What needs to be emphasized is that, all these advantages already are occurring for 

SM, which also can be framed by SSM.

4.2.1. Perceiving and predicting market demands

With the transformation of the production mode from mass to customized production, discovering customer 

preferences and demands has grown increasingly important for manufacturers. Accurately perceiving and predicting 

customers’ preferences and demands are effective means for manufacturers to make their products better fit the needs of 

customers, and to earn higher loyalty and profit (Bae and Kim, 2011; Fang et al., 2016). By applying BDA, the massive 

volumes of data related to customer demands (e.g. online reviews and sentiments, customer behaviors and evaluations, 
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and user experiences and feedback, etc.) can be collected and integrated from several sources for extracting actionable 

insights. These insights can be used to predict market demands in a timely mode, and the potential market size, margin, 

the number of competitors and the level of differentiation among products can also be predicted.

Although there are many factors that help to predict market demands, some factors are more important predictors than 

others. The use of BDA presents opportunities to identify the most important predictors of market demands, while 

manufacturers can closely monitor and analyze features, pricing strategies, and customer feedback of their competitors' 

products. This information can help manufacturers to develop appropriate new product strategies.

4.2.2. Improving product and service design

The traditional product and service design methods scarcely consider the voices of other lifecycle stakeholders into the 

decision-making process systematically (Zhang and Chu, 2009). In the context of SSM, the isolated lifecycle data that 

influence the product and service design can be integrated and analyzed to generate important insights about product 

improvements and innovations. For example, based on the data gathered during the production, operation, maintenance 

and recovery stages (e.g. assembly requirements, product performances, customer evaluations, environment impacts, 

etc.), BDA can be used to discover relationships between lifecycle data and product innovation, and used to refine 

existing designs helping to guide the development of specifications for new products. These relationships can also assist 

designers to improve product design, such as design for maintenance/remanufacturing/environment (Dombrowski et al., 

2014). 

With the increasing competition and environmental pressures, manufacturers are striving to re-position themselves as 

solution providers by offering high value-added PSS (Song and Sakao, 2017). However, the design of PSS faces many 

challenges. For instance, design requirements and constraints at the schematic design stage are always imprecise, and 

alternative selection and matching at the decision stage are usually uncertain (J. Li et al., 2015). Manufacturers have 

found that BDA is an efficient tool for identifying the hidden requirements and improving the effectiveness of selection 

about multiple design alternatives. BDA helps to find the relationships among requirements, attributes and alternatives as 

exactly as possible to give comprehensive guidance for new PSS developments. Some manufacturers are inviting 

external stakeholders to submit ideas for innovations or to collaborate on PSS development. By applying BDA, the 

valuable ideas from a large number of submitted ideas can be extracted and thereby, the open innovation of PSS 

development can be achieved (Manyika et al., 2011; Zheng et al., 2018b).

4.2.3. Improving product quality and yield

Based on the configuration of smart devices, the real-time data of manufacturing resources (e.g. operators, materials, 
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and WIP, etc.) can be tracked (Zhang et al., 2015). From the moment raw materials are delivered to the shop-floor to the 

moment the final products are packaged, there are dozens of quality control points deployed along the production line, 

and large quantities of data are produced. During operation and maintenance stages, the operation status and fault data 

can be used by manufacturers through BDA, to dramatically improve production and product quality.

Manufacturers can use BDA to find additional ways to reduce process flaws and to increase yields. For example, 

manufacturers can apply various data analysis models and algorithms to the production processes via usage of big data to 

determine interdependencies among process parameters, and their impacts on yields. The interdependencies can help 

manufacturers make better decisions in resetting parameters and in making targeted process changes that were found to 

have the highest impacts on yields. Additionally, BDA can be used to link equipment and process level data to inspection 

and metrology data to make more accurate predictions about yield failures. By identifying the factors responsible for 

failure, the BDA can help to reduce yield losses early in the production processes (Batra et al., 2016). Table 3 shows 

examples of applications of BDA in different industries for yield improvement. 

Table 3
Examples of applications of big data in different industries for yield improvements.

No. Industry Current movements Findings/solutions Economic benefit/ yield

1 Biopharmaceuticals Monitoring more than 200 variables 

in the vaccines’ production flow to 

ensure the purity of ingredients as 

well as the vaccines being made. 

Nine parameters were documented to 

influence yield.

Made targeted process optimization to take 

advantage of the nine parameters.

Increasing yield by more than 

50%, and worth between $5 

million and $10 million in 

yearly.

2 Chemical Using BDA to measure and 

compare the relative impacts of 

different production inputs on yield. 

The levels of variability in carbon dioxide 

flow prompted significant reductions in yield.

Reset the parameters of carbon dioxide flow.

Reduced waste of raw 

materials by 20%, and reduced 

energy costs by 15%.

Improving the overall yield.

3 Mining of precious 

metals 

Examined the production process 

data of mining precious metals on a 

number of process parameters. 

The best yield at the mine occurred on days 

in which oxygen levels were highest.

Changed the leaching process, without 

making additional capital investments.

Increased yield by 3.7% and 

maintained a $10 million to 

$20 million in annual profits.

Data source summarized from MGI (Auschitzky et al., 2014).

4.2.4. Optimizing shop-floor logistics

In SSM, IoT technologies are widely used to support the logistics management of warehouse and shop-floor, due to its 

capacity for real-time tracking the movements of manufacturing resources (Ren et al., 2018). In this context, large 

quantities of logistics data are generated from AGV, which can be used by internal and external logistics operators for 

improving logistics operations. In fact, for IoT-based SM, logistics planning and scheduling heavily rely on the arrival of 

materials, thus, the decisions on logistics trajectories (including crew and vehicle routing) are critical. The logistics big 
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data of shop-floors can be harnessed to develop improvements in logistics planning. Through analyzing the historical and 

real-time logistics data, the frequent trajectories that have significant impacts on productivity and delivery time can be 

identified. This knowledge can be used to make more targeted logistics planning decisions. For example, the frequent 

trajectories knowledge can be used to determine the layout of distribution facilities (e.g. the distances between each pair 

of machines and tolerable traffic volume of shop-floor), the optimal routing of the vehicles (e.g. adjust the sequence of 

visited machines in shop-floor), as well as the best delivery and pickup time windows (Vidal et al., 2012). These can 

result in improvements of many manufacturing dimensions in the shop-floor, including yields, equipment availability, 

operating costs, delivery time, and energy consumption.

4.2.5. Controlling and reducing energy consumption

In today's manufacturing scenarios, energy conservation and emissions reduction are two important tasks for 

manufacturing enterprise. With the continuous application of smart sensors and smart meters during the whole lifecycle, 

large amounts of real-time energy consumption data from production and operation process can be collected (W. Wang et 

al., 2018; Y. Zhang et al., 2018c). The energy consumption data provide great potential to improve the decisions of 

energy efficiency management and to reduce energy consumption (Shrouf and Miragliotta, 2015). For example, based on 

the large quantity of energy consumption data gathered from inside and outside the shop-floor, and the correlation 

analysis among data, materials and energy flows, the decisions of collaborative optimization for energy consumption can 

be generated. By analyzing the data on a number of process parameters, those which have significant impacts upon 

energy consumption can be identified to establish a predictive model for the reduction of energy consumption. That 

model can be used to define strategies for optimizing the day-to-day energy consumption of manufacturing enterprises 

(Moreno et al., 2016). Because energy waste problems (e.g. water, electric and gas leakage) in manufacturing enterprises 

are usually unobservable, dangerous and costly, big data inputs can help managers to identify and quantify the wastage 

points and to reduce or eliminate them in real-time.

4.2.6. Providing predictive maintenance service and intelligent spare part prediction services

The IIoT paradigm promises to increase the visibility and availability of lifecycle data (Jeschke et al., 2017). Via IIoT, 

real-time data of the whole lifecycle can be gathered and analyzed, to improve maintenance and service decisions.

The product operation status data are gathered and transmitted to the manufacturer in real-time is an important asset 

for maintenance decisions. For example, by analyzing the product operation status data, manufacturers can evaluate 

indicators to determine whether equipment performance is decreasing. These analyses can help manufacturers to 

accurately predict when the products will fail, and early fault warning and predictive maintenance can be achieved. 
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Operations and maintenance costs and equipment downtime can be reduced. A survey from MGI suggests that analyses 

of operation field data and provision of predictive maintenance services can reduce operational costs by 10% to 25% 

while potentially boosting production by 5% or more (Manyika et al., 2011). 

Through analyzing the data of the spare parts inventory, the consumption of spare parts can be dynamically predicted. 

Usage of BDA can significantly enhance the ability to predict failures for key spare parts, optimize transportation fuel 

efficiency, and suggest real-time route optimization (Boone et al., 2017). Therefore, intelligent spare part prediction 

services can be implemented and excessive production or excessive inventories can be avoided. These services can help 

manufacturers to transition to more sustainable production. For instance, by applying predictive maintenance service, the 

reliability of products can be increased and empty load energy consumption due to stopping and restarting of equipment 

and downtime can be reduced. By using the spare part prediction service, the inventory cost and material consumption 

can also be reduced.

4.2.7. Accurately predicting the remaining lifetime

It is clear that IoT technology can accurately gather data related to product lifecycle history (e.g. product design index, 

maintenance history, and operation status, etc.). Through analyses of the lifecycle data, the degradation status and 

remaining lifetime of products or parts can be predicted in real-time helping to make timely recovery decisions of EOL.

Although a complex product may not be useable any longer, that does not mean that every part of it is useless (Jun et 

al., 2009; J. Li et al., 2015). To prevent premature product obsolescence, it is important to predict the remaining value of 

parts. This issue highlights the need for BDA-based decision support. The predicted degradation status and remaining 

lifetime knowledge may benefit customers, manufacturers, and reduce environmental impacts. For customers, based on 

the discovered knowledge, sudden breakdowns of equipment can be effectively avoided contributing to enhance 

productivity and to reduce maintenance costs. For manufacturers, through providing accurate remaining lifetime 

information for its customers, the satisfaction and loyalty can be increased, more potential customers may be nurtured, 

and more profits can be created. Because manufacturers can be enabled to make better reuse and remanufacturing 

decisions, landfilling can be minimized, and negative impacts on the environment and humans can be reduced.

4.2.8. Optimizing recovery decisions and reducing environment impacts

Optimization of recovery decisions is regarded as a sustainable, environmentally friendly, and proven profitable 

practice in many developed countries (Abdulrahman et al., 2015). However, the optimizing process is not easy since a 

large amount of lifecycle data and historical lifecycle knowledge are needed and must be properly evaluated. 

By analyzing the historical lifecycle data, the remaining lifetime of each part can be predicted. Consequently, optimal 
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decisions of EOL product recovery can be made with the objective of maximizing values of EOL products (Jun et al., 

2007). In this process, BDA-based decision-support mechanism provides opportunities for making good EOL recovery 

decisions. For instance, in order to help planning the remanufacturing processes, early identification and classification of 

defective components and their related data are essential (Y. Zhang et al., 2018b). By BDA, it may be possible to presort 

and prioritize components based on their historical lifecycle status, because some components may not need to be 

disassembled, and some may not be suitable for remanufacturing and hence must be replaced.

One of the major objectives of EOL product recovery is to reduce the environmental impact (Dat et al., 2012). Thus, it 

is necessary to ensure that the recovery process is energy saving and environmentally friendly. To achieve this goal, 

BDA should be applied to improve resource saving and recovery activities associated with minimizing resource 

consumption and reduction of risk to the workers engaged in the recovery processes.

5. Current challenges and future research directions

As highlighted by Koetsier (2014), by leveraging BDA across the value chain, more industrial dimensions can be 

systematically integrated, and the enterprise managers can be enabled to gather, store, process, visualize data to support 

intelligent and timely decisions. It is envisioned that future BDA applications will be able to assist enterprise managers to 

learn everything about what they did today and to predict what they will do tomorrow (Zhong et al., 2016). Although 

BDA has been broadly accepted by many organizations, as a new concept, the research on BDA in SSM is still in its 

early stages due to several key challenges. 

To ensure that the current challenges are relevant to the previous literature review section and to guarantee the 

effectiveness of future research directions, two points need to be emphasized.

Firstly, the statements for the current challenges in this section were built upon the existing literature (Section 3). As a 

new scientific issue, the application of BDA in SSM, discussion and analysis of the challenges on its system architecture 

is critical and necessary (Section 5.1). In other words, a holistic architecture for capturing the business value in a 

systematic manner is the foundation to ensure the effective realization of SSM. Within a holistic architecture, the key 

technologies that have significant effects on SSM, mentioned in the previous literature review section, can be involved to 

ensure the effective implementation of SSM. Therefore, from Section 5.2 to Section 5.8, the challenges on these key 

technologies were discussed. These key technologies can be considered as two main sub-processes: data management 

(Section 5.2 to Section 5.5) and data analytics (Section 5.6 to Section 5.8). This conforms to the typical processes of 

extracting insights from big data, which are supported by Jagadish et al. (2014) and Gandomi and Haider (2015).

Secondly, all the statements for future research directions in this section were derived from the existing research and 
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involved the authors’ hypotheses. In addition to achieve the goals of SM, SSM is also promising to carry out sustainable 

production and CP, through fusion of the strategy of servitization within all stages of product lifecycle. As highlighted by 

Opresnik and Taisch (2015), servitization has become a pervasive business strategy among manufacturers, because it can 

enable the manufacturers to reduce production costs and to achieve sustainable production. When analyzing the 

servitization practices of manufacturing enterprises and deriving more value from the servitization, some researchers 

found that data plays an important role (Sakao and Shimomura, 2007; Welbourne et al., 2009). In this regard, data 

management (Section 5.2 to Section 5.5) and data analytics (Section 5.6 to Section 5.8) are key technologies for SSM 

and important elements and enablers for servitization. As a result, the research directions related to these key 

technologies were considered as relevant research directions of SSM and were discussed in this paper.

5.1. Architecture of BDA for SSM

An optimal enterprise information IT architecture should be constructed to deal with historical and real-time lifecycle 

data at the same time, to benefit systematically from the business values that can be derived. Although there are many 

reference architectures for BDA, such as Hadoop (Borthakur, 2007) and Storm (Iqbal and Soomro, 2015), several 

challenges exist in the SSM field. Firstly, the isolated lifecycle data cannot be effectively collected and integrated into 

traditional IT architectures, and the management of unstructured data is often beyond traditional IT capabilities 

(Gandomi and Haider, 2015). Secondly, much architecture was built to deliver and analyze data in batches, so provision 

of the continuous flow of data for real-time data analysis and real-time lifecycle decisions is a challenge. Thirdly, 

according to different applications, only the observed and specific functional components, analysis methods and 

technologies were designed and included in existing architecture.

Therefore, the future of the BDA architecture in SSM needs:

 Various data and software interfaces, as well as related technologies (e.g. acquisition, preprocessing, 

management and storage) and functional components should be designed to acquire and integrate the whole 

lifecycle big data. 

 Full analyses of the whole lifecycle data are not likely to be feasible in real-time decisions. One effective means 

is to find elements in large datasets that meet specified criteria (Jagadish et al., 2014). Therefore, new data index 

structures and data analysis methods should be created in the architecture to quickly and effectively find a variety 

of qualifying elements, and to provide reliable data support for accurate and almost real-time lifecycle decisions.

 A robust and scalable IT architecture to support various application requirements and optimization tasks for all 

lifecycle stakeholders (Hu et al., 2014). If the architecture is extended, in the future, based on other BDA 
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applications, it should be designed to be scalable with new functional components or relevant technologies.

5.2. Data quality management for SSM

Monitoring and controlling of data quality during all lifecycle processes are important for manufacturers to perform 

BDA, and to make better SSM and servitization related decisions. As emphasized by Wamba et al. (2015), the 

availability of good quality of big data is crucial to add value to the organization. Poor quality data have little potential to 

assist managers to make correct decisions, wasting organizational resources and adding data storage costs (Cynthia et al., 

2012). As the quality and quantity of lifecycle data are enhanced, they can be used to improve business models and 

decisions as well as servitization processes. However, there is the risk of inconsistent and incomplete data, which may 

undermine service delivery and decision-making processes. Therefore, poor data quality and ineffective data 

management in the whole lifecycle are key challenges to be solved for effectively applying BDA in SSM.

Future perspectives of the data quality management in SSM should focus on the following aspects:

 With the goal of improving data quality and the decisions based upon the data, the theories of RBV and KBV 

(Hazen et al., 2014) should be investigated to enable continuous monitoring mechanisms and ensure that future 

lifecycle data acquisitions are properly managed.

 The tools of data quality management such as process capability analyses (Veldman and Gaalman, 2014), and 

statistical process control chats (Jones-Farmer et al., 2014) should be investigated and used to improve data 

quality during the lifecycle of data acquisition, storage and usage.

 The theories of managing and querying probabilistic and conflicting data (Jagadish et al., 2014) should be further 

explored to manage and correct the incompleteness and inconsistency in the lifecycle data.

5.3. Data acquisition 

All decisions related to SSM are based on whole lifecycle data. In spite of the fact that there are multiple data 

acquisition methods such as Auto-ID technologies and smart sensors, accurate and complete acquisition of the whole 

lifecycle data in a timely fashion continues to present large challenges for SSM field (Zhong et al., 2013, 2016b). Firstly, 

manually-based data acquisition approaches are still widely used in some lifecycle stages, especially in the design, 

maintenance and recovery stages. The data acquired from these approaches are usually inaccurate and untimely, thus, 

decisions based on such data are usually ineffective. Secondly, for the majority of traditional products, such as machine 

tools, the data flow usually breaks down after the delivery of products to customers and the products are always used in 

different conditions. Therefore, the real-time, accurate, and complete data acquisition for MOL and EOL stages is a 

challenge that must be addressed.
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To address these challenges, further research on data acquisition in the whole lifecycle should be conducted as follows:

 The RFID must be utilized more effectively in the management of technical documents in the design stage. For 

example, the passive RFID tags can be attached to all technical documents to manage large quantities of 

technical documents in a systematic way and thereby, reduce unnecessary errors. In addition, the RFID device 

can be used as a mobile memory to record and update the real-time degeneration status and lifetime data of 

components in the EOL stage (Jun et al., 2009).

 To use smart mobile devices to collect the real-time field data. For example, IoT technologies can be embedded 

into the physical products with the functionalities for gathering the lifecycle data. In addition, the multi-

functional, wireless or contactless, as well as much smarter data acquisition devices, such as wearable devices 

with intelligence (C. H. Wang, 2015; Zheng et al., 2018a), should be designed to capture product-related data 

under extreme environments, such as high temperatures, high pressures, toxic, and high nuclear radiation 

environments.

5.4. Data integration and aggregation

An effective decision of SSM requires the collection of heterogeneous lifecycle data from multiple sources. In SSM, 

software tools and systems used by all departments and lifecycle stages should be integrated so that the whole lifecycle 

data can be shared promptly and correctly among all stakeholders (Zhang et al., 2017c). However, diverse data 

acquisition devices, software tools and systems have their own specific data formats, which are commonly 

heterogeneous, unstructured, and incompatible. Integration and aggregation of the whole lifecycle data for effective SSM 

decision-making, urgently needs in-depth research, development and testing.

Future data integration and aggregation must be performed in two dimensions related to the data meta-models and 

middleware technologies:

 An unified data modeling method can be used to construct the multi-granularity and multi-level data models 

(Petrochenkov et al., 2015), and to integrate the data of various lifecycle stages. The concept of the meta-model 

must be developed and integrated to build the unified data models. From the perspective of product lifecycle, 

design, production, maintenance and recovery data meta-models should be developed and utilized (Zhang et al., 

2017b).

 In the future, much smarter middleware technologies and methods, such as IoT middleware (Ngu et al., 2017) 

must be developed to transform raw lifecycle data into a standardized format and meaningful information for all 

lifecycle stakeholders to use. The smart middleware must provide functions for data cleaning, semantic data 
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filtering, data aggregation and active data tracking.

5.5 Application of cloud-based techniques in SSM

Besides having the capability of large-scale computing, the cloud-based techniques can provide the storage capability 

for the whole lifecycle big data (Tao et al., 2017). However, there are several challenges involved in applying cloud 

storage in SSM. Firstly, the security and privacy should be addressed. For example, the lifecycle data may contain 

sensitive data of customers, suppliers and manufacturers, and the tools to make use of these data may give rise to 

unauthorized access. Secondly, query optimization is needed to harvest the knowledge hidden in the lifecycle big data. 

Improved methods of optimized query pertaining to energy consumption and fast processing time are essential. 

Therefore, future application of cloud-based techniques in storage of lifecycle big data for SSM should be focused 

upon the following aspects:

 New safety tools should be developed and implemented to improve the security of cloud-based storage 

mechanisms. This may be achieved by leveraging conventional security mechanisms in combinations with new 

technologies, such as Apache Accumulo (Zareian et al., 2016). In addition, the development of human-computer 

interaction techniques (Xu, 2012) should attract researchers’ attention, to help security analysts to convey 

information to customers’ formats, that are easier to utilize.

 In the future, the criteria to support partial query optimization must be refined so that a small amount of 

incremental computation with new data can be used to facilitate quick and effective decision-making processes. 

Therefore, seeking to develop systems with suitable interactive response times (Jagadish et al., 2014) in querying 

complex, high-volume lifecycle data is urgently needed. Additionally, parallel computing mechanisms (Catalin, 

Boja, Adrian, Pocovnicu, Lorena, 2012) should be developed to provide effective methods for query processing 

in cloud-based storage environments.

5.6 Models and algorithms of BDA-based decisions for SSM

The decisions in SSM require relevant knowledge that could be discovered from the whole lifecycle big data. 

Currently, the traditional DM and AI models and algorithms are being updated by many researchers, and are called BDA-

based decision approaches (Zhong et al., 2016). However, many existing models and algorithms cannot meet the 

challenges in applying of BDA to SSM. Firstly, the decision models of SSM may need large amounts of data for mining 

knowledge for various lifecycle applications in real-time (e.g. such as shop-floor scheduling and predictive maintenance). 

However, many algorithms are not suitable for analyzing large numbers of data sets, in a timely mode. Secondly, current 

decision-support models always operate in isolation to analyze the given data of a specific lifecycle phase, to solve 
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specific lifecycle problems. Generic models that can analyze the whole lifecycle data for solving multi-objective 

problems have been seldom considered.

New methods can provide answers to these challenges by developing BDA-based decision models and algorithms for 

SSM in two directions:

 The self-adaptive and self-learning models that have the capability of learning from massive data for evolving in 

timely and continuous processes should be developed (Zhang et al., 2017a; Zhu et al., 2018). The deep learning 

theories should be integrated into decision-support models so that real-time and automated analyses can be 

achieved.

 The mixed-initiative learning models, based on the idea of collaborative decisions (Stefanovic, 2015) are 

required. New decision-support mechanisms must be designed to work collaboratively with various lifecycle 

experts to jointly analyze massive quantities of data, based upon diverse knowledge to make more informed 

lifecycle decisions.

5.7 Application of complex network theory in SSM

Applications of complex network theory in SSM can provide a more effective way to solve complicated lifecycle 

management problems due to the increasingly ubiquitous connections of manufacturing resources and products. For 

example, in the product design stage, complex network theory can be used to reveal the complicated relationships 

between products and parts (Y. Li et al., 2017), products and services, as well as the data and knowledge flow in/among 

enterprises, to achieve collaborative innovation and design. Such complex networks are being used to explore the 

relations between and among workstations, to manage manufacturing services and supply chains (Qin et al., 2011; Kim et 

al., 2015; Cheng et al., 2017). Despite its theoretical successes, complex network theory remains young with many 

challenges. Firstly, although complex networks can analyze diversified network structures, networks intertwined in 

complex SMM environments, continue to be key challenges. Secondly, the applications of complex networks in 

manufacturing mostly focus on the exploration phase. The integration of phases such as the feedback and collaboration 

mechanisms among different lifecycle stages in real-time have not yet been solved.

Future directions for research on complex networks in SSM include:

 New approaches that effectively integrate collaboration of complex networks built by different lifecycle 

stakeholders. These may include more appropriate network models, such as hyper-networks (Cheng et al., 2018b) 

designed to monitor the interactions and influences among multi-layer networks.

 Development of network models for real-world usage to obtain solutions for desired objectives in SSM. More 
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advanced algorithms based on BDA for network construction should be designed. To achieve the objective of 

dynamic optimization of supply and demand matching of manufacturing resources and allocation of 

manufacturing services (G. Zhang et al., 2018), dynamic network evolution models based on the real-time 

lifecycle data are needed.

5.8 Energy-consumption analysis and optimization of SSM

Green, energy saving, and sustainable production and consumption of renewable energy are major objectives of the 

SSM. Energy-consumption analysis and optimization of the whole lifecycle is a key issue for realizing green and 

sustainable production and consumption (Santos et al., 2011). To realize energy-consumption optimization in SSM, 

several challenges must be addressed. First, with the help of lifecycle big data, models or algorithms of energy-

consumption analysis and optimization for various lifecycle stages must be established. However, the data-driven models 

do not have evaluation criteria and index to assess efficiency and effectiveness (Zhong et al., 2016). Then, in SSM 

environments, the availability of energy-consumption related data can be greatly enhanced due to continuous energy 

usage monitoring and tracking. This has highlighted the need for establishing an intelligent energy-consumption 

management system for SSM.

To address these challenges, two research directions are recommended:

 Energy-consumption evaluation criteria and index systems should be developed for diverse lifecycle stages. 

Multi-objective energy-consumption evaluation index systems with flexibility and variability of 

material/energy/data flow (Hou et al., 2016) in the whole lifecycle should be developed and tested in real-time 

systems.

 To achieve intelligent energy-consumption decision-making, an energy cyber-physical ecosystem (Palensky et 

al., 2014) should be developed to monitor and manage the interactions and influences of energy usage among 

various lifecycle stages. Data on these interactions can be delivered to cyberspaces to achieve real-time 

monitoring and dynamic optimization of energy efficiency.

The current challenges for SSM from the perspective of product lifecycle were briefly summarized and are listed in 

Table 4.

Table 4
Current challenges for SSM from the perspective of product lifecycle.

Product lifecycleCurrent challenges

Design Production Maintenance/ service Recovery

Architecture of BDA for SSM √ √ √ √

Data quality management for SSM √ √ √ √
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Data acquisition √ √ √ √

Data integration and aggregation √ √ √ √

Application of cloud-based techniques in SSM √ √ √ √

Models and algorithms of BDA-based decisions for SSM √ √ √ √

Application of complex network theory in SSM √ √

Energy-consumption analysis and optimization of SSM √ √ √ √

6. Conclusions

As a new networked and service-oriented manufacturing paradigm, the SM has experienced rapid development in 

recent years. The objective of developers of SM is to help managers to make more efficient, profitable and sustainable 

decisions. Within the SM environment, the emerging technologies such as IoT, sensors and wireless technologies are 

being increasingly used by industrial leaders to capture and utilize data in all stages of the product lifecycle. 

Consequently, a large amount of multi-source and heterogeneous datasets are being collected and used for supporting 

lifecycle decision-making. Among a large variety of key technologies for SM, the BDA was considered as one of the 

most important technologies, due to its capacity to explore large and varied datasets to uncover hidden patterns and 

knowledge as well as other useful information. The discovered patterns and knowledge can help industrial leaders to 

make more-informed business decisions, and to achieve the whole lifecycle optimization and more sustainable 

production. 

The literature review revealed that BDA and SM have been individually researched in academia and industry, but the 

research into simultaneously applying BDA to SM is still in its infancy. To address these limitations, the authors provide 

insights for future research in this field. The following significant contributions were made by the authors of this review: 

 Firstly, by combining the key technologies of SM with the concept of ubiquitous servitization at all lifecycle 

stages for intelligent and sustainable production, the term SSM was coined and used throughout this paper. This 

concept did not exist in a clear form before but it is crucial to advance knowledge in this area, Therefore, the 

definition of SSM was given, and the differences between this definition and Industry 4.0 and SM were 

highlighted. 

 Secondly, a comprehensive review of big data in SM was conducted. The concepts of big data and data 

classification criteria, system architectures, key technologies of SM, and applications of BDA in SM were 

characterized in detail. Four knowledge gaps were identified, and the insights from the literature on typical DM, 

AI and BDA methods in different lifecycle stages were summarized. 

 Thirdly, from the perspective of product lifecycle, a conceptual framework of BDA in SSM was proposed. The 

framework can be used as a guideline to select the relevant lifecycle stages that impact the sustainable production 
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of a given enterprise. The potential applications and key advantages of BDA in SSM were discussed. 

 Finally, current challenges and future research directions, which should identify relevant future research 

directions in academia and in industry were discussed.

Both academics and industrial leaders will obtain insights from the summary of the major lines of research in the field. 

Future work should be focused upon ways to improve the proposed framework by considering a wider range of 

applications of BDA in product lifecycle for sustainable production and CP. In addition, other key technologies related to 

SM should also be investigated. The authors solicit reader’s feedback and suggestions for cooperation and collaboration 

in this rapidly evolving array of approaches to help making quantitative and qualitative improvements in all societies.
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Appendix A. The research of typical data mining, artificial intelligence, and big data analytics 

methods in product lifecycle management.

Typical methodsLifecycle 

stages

Lifecycle sub-

stages Data mining Artificial intelligence Big data analytics 

Applications Shortcomings

Customer 

requirements 

identification

Fuzzy clustering, fuzzy 

association rule mining (Jiao 

and Zhang, 2005; Li et al., 

2013); Apriori, C5.0 DT 

(Bae and Kim, 2011; Ma et 

al., 2014) 

ANN, back 

propagation 

(Efendigil et al., 

2009; Lee et al., 

2011); bootstrap 

aggregating, PCA 

(Liu et al., 2013)

Autoregressive 

integrated moving 

average model (Jun et 

al., 2014); web 

crawling and NN 

(Chong et al., 2017); 

Kalman filter and 

Bayesian (Jin et al., 

2016); hierarchical 

multiple regression 

(B. Li et al., 2016)

Consumer 

electronics, 

furniture/jewelry/

hybrid car 

industry

Many researches 

focused on e-

commerce.

Fewer studies 

involved in industrial 

products field.

Design

Design scheme 

configuration 

and optimization

C4.5, association rule 

mining, NSGA-II (Fung et 

al., 2012; Geng et al., 2012); 

fuzzy clustering, RST (Hong 

et al., 2010); K-means and 

AdaBoost classification (Lei 

Hybrid PSOA 

(Tsafarakis et al., 

2013); ABC (Chen 

and Xiao, 2014); 

BPNN, fuzzy 

regression (Kwong et 

ABS and ANN 

(Afshari and Peng, 

2015; Kutschenreiter-

Praszkiewicz, 2013) 

Automobile, 

hybrid rocket 

engine, gear box, 

electrical bicycle, 

printed circuit 

board, steel and 

The methods of BDA 

were seldom 

investigated. Many 

researches were based 

on the traditional AI 

methods. 
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and Moon, 2015) al., 2016) chemical 

industry

Shop floor 

scheduling

Attribute induction algorithm 

(Koonce and Tsai, 2000); C-

fuzzy and DT (Shahzad and 

Mebarki, 2012)

SA, TS, VNS, ACO 

(Lee, 2007; Çaliş and 

Bulkan, 2015); ANN 

and RBFN (Mehrsai 

et al., 2013)

Max percentages, 

Min-Min and 

Sufferage algorithm 

(X. Li et al., 2016); 

GA, NSGA-II and 

MapReduce (Lu et 

al., 2016); 

RapidMiner  

platform and DT (Ji 

and Wang, 2017)

Automotive 

industry, rotary 

injection 

molding industry

Most literatures were 

theoretical and 

simulated studies, the 

industrial applications 

were fewer involved.

Production

Quality control K-means clustering, fuzzy C-

means clustering, association 

rule mining, SVM (Da 

Cunha et al., 2006; Köksal et 

al., 2011); PCA, EM (Zhang 

and Luk, 2007); regression 

DT, KNN (Ferreiro et al., 

2011) 

Grey relational 

analysis, GA (Sibalija 

et al., 2011); role-

based context-specific 

Q-learning algorithm 

(Mahdavi et al., 

2013); case-based 

reasoning and fuzzy 

logic (Choy et al., 

2016) 

Multilevel stratified 

spatial sampling (Xie 

et al., 2015); 

MapReduce 

framework and radial 

basis function-based 

SVM (Kumar et al., 

2016)

Automotive, 

plastic injection 

molding, printed 

circuit board, 

steel/chemical/ce

ment industry

New methods 

relevant to BDA were 

fewer.

Most researches 

focused on process 

manufacturing, the 

discrete 

manufacturing was 

fewer considered.

Fault 

identification and 

diagnosis

NN, boosting tree algorithm 

(Kusiak and Verma, 2012); 

AD and SVM 

(Purarjomandlangrudi et al., 

2014); k-medoids algorithms 

(Demetgul et al., 2014); 

associated frequency pattern 

tree (Rashid et al., 2016)

PSOA, extended 

Kalman filter 

(Nyanteh et al., 

2013); random forest 

fusion, SVM (Jia et 

al., 2016; C. Li et al., 

2015); SVM 

regression 

(Gururajapathy et al., 

2017)

Classification and 

regression tree (Chien 

and Chuang, 2014); 

sparse filtering of 

NN, softmax 

regression (Lei et al., 

2016); Storm, Spark 

platform and SVM 

(Wang and Zhang, 

2017)

Automotive, 

semiconductor 

manufacturing, 

gearbox, rotating 

machinery, 

motor bearing

Lacking of the 

combination of BDA 

and other intelligent 

algorithms in current 

researches.

Maintenance 

& service

Predictive 

maintenance

Apriori, C5.0, Boosting 

(Raheja et al., 2006; Unal et 

al., 2016); clustering and 

RST (Magro and Pinceti, 

2009); EM, linear regression 

(Onanena et al., 2010)

SVM, KNN 

(Nadakatti et al., 

2008; Susto et al., 

2015); NN auto 

regression, feed-

forward back 

propagation ANN 

(Lam and Oshodi, 

2016; D. Wu et al., 

2017)

PCA, DT, clustering 

(Li et al., 2014; Lee et 

al., 2015a); 

roughness-induced 

pavement vehicle 

interaction model, 

deflection-induced 

model (Louhghalam 

et al., 2017) 

Fuel cell, 

bearings, 

semiconductor 

device, milling 

tool, rail and 

road network

The methods of BDA 

in this stage were 

scarce.

Most literatures were 

theoretical and 

experimental studies, 

industrial applications 

were fewer involved.
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Improve the QoS DT, association rules mining 

(Huang and Hsueh, 2010); 

dominance-based rough set 

and DOMLEM algorithm 

(Liou et al., 2011); 

classification and regression 

trees (De Oña et al., 2012)

Multilayer perceptron 

ANN, fuzzy inference 

(Hsieh, 2011)

Logistic regression, 

SVM, and Hadoop 

platform (H. Li et al., 

2015); PageRank,  

AuthorRank and 

MapReduce 

framework (Sun et 

al., 2015)

Airport, tourist, 

computer and 

social networks, 

traffic, telecom

Many researches 

focused on tourist, 

traffic and telecom 

industry, the QoS for 

industrial products 

field was concerned 

rarely.

Spare part 

service

K-means clustering, 

association rule mining 

(Kargari and Sepehri, 2012; 

Moharana and Sarmah, 

2016) 

Fuzzy logic, grey 

theory (Zeng and 

Wang, 2010); ANN, 

multiple regression 

(Kumru and Kumru, 

2014)

BI semantic model, 

clustering, NN, DT 

(Stefanovic, 2015)

Automotive, 

nuclear power 

plant, metal 

industry

The methods for this 

stage were seldom 

developed. 

Studies of BDA on 

this topic were just 

theoretical researches, 

the engineering 

applications were 

almost vacant.

Recovery Remanufacturing 

and recycling

C4.5, preference trend 

mining algorithm (Ma et al., 

2014); text mining, 

clustering, regression 

(Mashhadi et al., 2016; 

Mashhadi and Behdad, 2017)

GA and inverted tree 

(Smith et al., 2012); 

PSOA, GA (Guo and 

Ya, 2015);  KNN, 

fuzzy RBFN (Roh 

and Oh, 2016)

Game theoretic, 

Bertrand model, 

Stackelberg model 

(Niu and Zou, 2017) 

Electronic 

products, gear 

reducer, 

chemical 

industry

All three methods 

have rarely 

researched at EOL 

stage, especially for 

BDA. The methods 

for BDA in this stage 

were almost vacant.
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• A comprehensive overview of big data in smart manufacturing was developed. 

• A framework of big data analytics in sustainable smart manufacturing was proposed.
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