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H I G H L I G H T S  

• Electric spring model is developed for demand-side management. 
• Flexibility of EVs is used to increase wind energy. 
• EVs and electric spring are modeled as flexibility tools to transfer energy. 
• The paper deals with day-ahead operation of smart microgrids. 
• Hybrid stochastic/robust optimization is proposed to handle uncertainty.  
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A B S T R A C T   

Electric spring (ES) as a novel concept in power electronics has been developed for the purpose of dealing with 
demand-side management. In this paper, to conquer the challenges imposed by intermittent nature of renewable 
energy sources (RESs) and other uncertainties for constructing a secure modern microgrid (MG), the hybrid 
distributed operation of ESs and electric vehicles (EVs) parking lot is suggested. The proposed approach is 
implemented in the context of a hybrid stochastic/robust optimization (HSRO) problem, where the stochastic 
programming based on unscented transformation (UT) method models the uncertainties associated with load, 
energy price, RESs, and availability of MG equipment. Also, the bounded uncertainty-based robust optimization 
(BURO) is employed to model the uncertain parameters of EVs parking lot to achieve the robust potentials of EVs 
in improving MG indices. In the subsequent stage, the proposed non-linear problem model is converted to linear 
approximated counterpart to obtain an optimal solution with low calculation time and error. Finally, the pro-
posed power management strategy is analyzed on 32-bus test MG to investigate the hybrid cooperation of ESs 
and EVs parking lot capabilities in different cases. The numerical results corroborate the efficiency and feasibility 
of the proposed solution in modifying MG indices.   

1. Introduction  

a. Aims and Motivation 

In recent years, the development of renewable energy resources 
(RESs) and electric vehicles (EVs) into the power system especially 

traditional distribution networks to be more environmentally friendly 
has created serious challenges [1,2]. Due to uncertainties associated 
with RESs generation and the heterogeneity of EV users, there is power 
imbalance, voltage and frequency fluctuations and feeder overloading in 
this network [3]. Further, due to the existence of randomness in the 
market energy price and load demand, implementing a proper man-
agement in the smart active distribution network (SADN) becomes 
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difficult. These high-impact-frequent oscillations originated from the 
mismanagement of sources and active loads (ALs) cannot be managed by 
traditional operational techniques, and infrastructural reinforcement 
measures [4,5]. The application of electric spring (ES) as a novel smart 
load that can be placed serially between non-critical and critical loads 
has recently been suggested for microgrid (MG) vulnerabilities (Fig. 1) 
[6]. The ESs like EVs can appear in the role of smart ALs or flexibility 
resources (FRs) due to exchanging active and reactive powers with the 
MG. Now there is a great amount of concerns about the mismanagement 
of ES and other FRs such as EVs due to its impact on critical loads and 
operating conditions of MG [7]. To cope with the growing share of 

uncertainties and managing the complex interactions of FRs, this paper 
proposes a coordinated power management strategy (PMS), aiming to 
jointly optimizes the technical, i.e. operation, security, reliability and 
flexibility, and economic indices of the SADN.  

b. Literature Review 

Upgrading the structure and capabilities of the ES has been the 
subject of various studies exploring different generations of ES [7–11]. 
To provide active power control capability to the capacitor-based ES 
(ES-1), in the second generation (ES-2), by replacing battery with the 

Nomenclature 

Sets and indices 
x, y buses indices 
h hours index 
N, T, CB, ES sets of buses, simulation time, critical buses and buses 

contain ES, respectively 
S scenario index 
u, v linearization segments’ Indices for the piecewise method 

and circular constraint, respectively 
L, K sets of linearization segments of the piecewise method and 

circular constraint, respectively 

Descision-making variables 
ESP

B ES’s battery active power in per unit (p.u.) 
EVQ EVs parking lot reactive power, respectively (p.u.) 
ESQ ES’s reactive power, respectively (p.u.) 
EVP

B EV batterie’s active power in the parking lot (p.u.) 
DUS unsupplied active power (p.u.) 
ESQ

Cap, ESQ
Ind ES’s converter capacitive and inductive powers, 
respectively (p.u.) 

EVQ
Ind, EVQ

Cap EV’s inductive and capacitive reactive powers, 
respectively (p.u.) 

ESv, ESx active and reactive power binary variables of ES states, 
respectively 

EVv, EVx active and reactive power binary variables of EV states, 
respectively 

Dependent variable 
F objective function 
WSI worst stability index 
ESP ES’s active power, respectively (p.u.) 
DSP, DSQ distribution station’s active and reactive powers, 

respectively (p.u.) 
LP, LQ MG lines’ active and reactive power flows, respectively (p. 

u.) 
ESE

B ES’s battery stored energy (p.u.) 
ESP

Disch, ESP
Char ES’s discharging and charging active powers, 
respectively (p.u.) 

EVP EVs parking lot active power, respectively (p.u.) 
EVP

L EV converters’ active power loss (p.u.) 
EVE

B EV stored energy in the parking lot (p.u.) 
EVP

Char, EVP
Disch EV’s charging and discharging active powers, 
respectively (p.u.) 

SE security energy (without unit) 
FE flexibility energy (without unit) 
EENS expected energy not supplied (MWh) 
ESF

U, ESF
D ES battery’s upward and downward flexibility, 

respectively (p.u.) 

NCLF
U, NCLF

D non-critical load’s upward and downward flexibility, 
respectively (p.u.) 

EVF
U, EVF

D EV parking lot’s upward and downward flexibility, 
respectively (p.u.) 

V, ΔV, θ magnitude (p.u.), deviation (p.u.) and angle (radiant) of 
voltage, respectively 

Parameters 
B bus incidence matrix (if line connected buses x and y, Bx,y is 

1, and 0 otherwise) 
MES ES bus incidence matrix (if ES is located at bus x, MES is 1, 

and 0 otherwise) 
ρDS the market energy price of distribution station at hour h 

and scenario s ($/MWh) 
RES renewables active power (p.u.) 
DP, DQ laod’s active and reactive powers, respectively (p.u.) 
EVE

Arr,EVE
Dep EV’s energy at arrival and departure times in the 

parking lot, respectively (p.u.) 
ξ scenario probability 
Vref slack bus voltage (p.u.) 
V0 load flow voltage (p.u.) 
Zq, Iq,Pq ZIP load model parameters 
g, b MG lines conductance and susceptance, respectively (p.u.) 
DSS

U, LS
U,x,y upper capacity limit of distribution station and microgrid 

lines existed between buses x and y, respectively (p.u.) 
ESS

U, EVS
U upper capacity limits of ES and EV converters, 

respectively (p.u.) 
VU, VL upper and lower limits of buses’ voltage magnitude, 

respectively (p.u.) 
ESP

B,U, ESP
B,L charge and discharge rate of ES’s battery, respectively 
(p.u.) 

ESE
B,U, ESE

B,L upper and lower limits of ES’s battery energy, 
respectively (p.u.) 

VCB
U , VCB

L upper and lower limits of critical buses’ voltage 
magnitude, respectively (p.u.) 

α, β ES’s power converter loss coefficients 
λ, γ loss coefficients of EV’s power converter 
EVP

B,U, EVP
B,L charge and discharge rate of EV’s battery in the parking 
lot, respectively (p.u.) 

EVE
B,U, EVE

B,L upper and lower limits of EV’s battery energy, 
respectively (p.u.) 

WSIL lower limit of WSI 
VOLL valuo of lost load ($/MWh) 
FIP flexibility incentive price ($/MWh) 
SIP security incentive price ($/MWh) 
ΔVU, ΔVCB

U upper limits of buses and critical buses voltage 
magnitude deviation, respectively (p.u.) 

R, X MG lines resistance and reactance (p.u.)  
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capacitor, the high cost of the battery and the limited operating range 
have been imposed on the ES. In the next generation, to eliminate the 
limitations of active power control and low operating range of the two 
prototypes, the use of back-to-back converter (B2B) with isolation 
transformer is proposed for permanent supply of the ES from the grid 
(ES-B2B) [8]; While the investment cost of ES has increased signifi-
cantly, the power quality problems caused by power converters have 
increased. In another photovoltaic based ES structure (ES-PV) [9], the 
utilization of PV energy was proposed to supply the required energy of 
the ES and reduce the energy received from the MG, in which due to the 
uncertainty in PV production there was still a need for high storage 
capacity [10]. In [11], to remove the DC/DC converter of ES-B2B and 
ES-PV, application of a bidirectional AC/DC converter with a battery 
was proposed. In another approach, instead of focusing on improving 
the structure of the ES to reduce the required capacity of the battery, the 
coordinated power control of the battery with non-critical load (NCL) 
and grid is proposed [12]. 

Generally speaking, prior studies have focused on the configuration 
and dynamic modeling of ES [13–15]. It should be noted that modeling 
of power system elements is done in static, quasi-static and dynamic 
forms. These types of categorizations are based on the time interval of 
studies. The shortest time period is the dynamical model, followed by 
quasi-static and static models. According to the literature, generally, the 
articles presented the dynamic model of ES in which time-varying ES 
and network variables were analyzed. However, given some of the 
important issues in the power system, such as optimal power flow (OPF) 
in the power system planning, operation, etc., due to the longer period of 
study, we need to develop the static model of ES. Additionally, in order 
to investigate the capability of ES on the technical and economic indices 
of a MG faced with various uncertain resources and loaded by EVs, it is 
necessary to define an OPF problem. This requires developing the static 
model of ES due to the operation of the network in a long study period 

(e.g. 24 h). 
In the field of static model of ES as shown in Table 1, for the first time 

in [11], we presented a non-linear programming (NLP) formulation of 
the static model in the context of scenario-based stochastic program-
ming (SBSP). To model the uncertain parameters the roulette wheel 
mechanism (RWM) for generating scenarios as well as the simultaneous 
backward method to decrease generated scenario samples have been 
employed. One of the major problems of SBSP is the need to generate a 
large number of scenarios to obtain a guaranteed response and accurate 
estimation of uncertain parameters’ probability density function (PDF). 
The high number of generated scenarios, however, results in increasing 
computational complexity and reducing convergence speed. Therefore, 
to reduce scenario samples many researches have used scenario reduc-
tion techniques, which does not remarkably eliminate the mentioned 
shortcomings [16]. Therefore, to solve the mentioned issues of sto-
chastic modeling, in this paper, the problem will be modeled as a hybrid 
stochastic-robust optimization (HSRO). In other words, for modeling 
uncertainty in the stochastic part, unscented transformation (UT) 
method is used which has a much lower number of generated scenarios 
than other techniques, without any need to lessen generated scenario 
samples [17]. Therefore, uncertain parameters such as load demand, 
energy price, RESs output and MG equipment availability are modeled 
by the UT method. In addition, for modeling EVs uncertain parameters 
consist of charging and discharging power rate, arrival and departure 
energy and charger capacity of EVs in the parking lot, bounded 
uncertainty-based robust optimization (BURO) will be used to investi-
gate the EVs’ robust potentials in improving MG indices technically and 
economically [18,19]. In more researches [20–22], EVs capabilities 
have been used to facilitate MG operating conditions, i.e. voltage and 
frequency stabilization, energy loss, lines overloading, etc. In this paper, 
however, EVs parking lot is coordinately utilized with ES to modify the 
network flexibility, reliability, security, operation and economic indices. 

Fig. 1. Proposed outline for power management strategy in a microgrid.  

Table 1 
Taxonomy of recent works in the area of electric spring.  

Ref. No. Coordinated PMS 
between sources and ALs 

Considering indices Uncertainty modeling Mathematical 
modeling type of 
ES 

Technical Economic Stochastic Robust Deterministic Static Dynamic 

Flexibility Reliability Security Operating 

[11] × ✓ × × ✓ × ✓ × × ✓ ×

[13] × × × × × × × × × × ✓ 
[14] × × × × × × × × × × ✓✓ 
[15] × × × × × × × × × × ✓ 
[41] × × × × ✓ × × × ✓ ✓ ×

PM ✓ ✓ ✓ ✓ ✓ ✓ HSRO ✓ ✓ ×

PM: Proposed model. 
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The mentioned purposes can be achieved if the MG uses a suitable 
energy management system (EMS) or PMS [23]. In the EMS method, the 
energy or active power control of different sources and ALs are done to 
improve network operation [24], flexibility [25], reliability [26], and 
economic [27]. However, in order to investigate network security index, 
it is necessary to control the reactive power [28], which is done in the 
PMS simultaneously with the active power control. 

According to Table 1, no work has been performed to analyze the 
impacts of distributed ESs and EVs coordination on the network indices. 
Owing to the dependency of network indices on each other, simulta-
neous analyzing of them is of utmost importance. Hence, this paper 
implements PMS in the MG based on simultaneous modeling of the 
flexibility, reliability, operation, security and economic indices. As 
shown in Fig. 1, in the proposed PMS, operation of distributed renew-
able and flexible resources including ESs and EVs parking lots are cen-
trally coordinated by MG operator (MGO), so that by implementing 
optimal scheduling of MG, maximum revenue is obtained. 

Finally, the non-convex NLP format of the original PMS model which 
is normally solved by time-consuming numerical methods [29–31] or 
evolutionary algorithms [32,33] and leads to the locally optimal solu-
tion, will be converted to convex linearized format to reach a faster 
globally optimal solution. This process is done through conventional 
linearization approaches, as a type of convex relaxation methods 
[34–37].  

c. Research Gaps and Contributions 

In summary, according to the above-mentioned researches and 
Table 1, the main research gaps and the foremost contributions made in 
this paper are:  

- According to the literature, relatively extensive studies have been 
conducted in the field of control and structure of ES compared to its 
modeling. Although limited studies have been done on the dynamic 
modeling of ES [38], to the best of the authors’ knowledge, the in-
tegrated static mathematical modeling of ES and EVs parking lot has 
not been presented yet, which is necessary for the technical and 
economic evaluation of the proposed plan capabilities. 

- In the field of uncertainty modeling, the stochastic modeling of un-
certain parameters including energy price, load demand and RESs 
output have been expressed in [11]. While in this paper, in addition 
to the UT-based stochastic model of the aforementioned parameters 
and the MG equipment availability, EVs parking lot uncertain pa-
rameters including charging and discharging power of EVs fleet, 
arrival and departure EVs’ energy and EVs’ charger capacity are 
modeled using BURO method in the proposed PMS. Uncertainties as 
a vital issue in the flexible operation of MG have not been studied in 
such a way so far.  

- In most studies, the auxiliary services capabilities of ES including 
voltage and frequency compensation have been widely considered 
[39,40], whilst in this paper, the impact of cooperative performance 
of ESs and EVs parking lots on MG economic and various technical 
indices are simultaneously quantified. It can be considered as a novel 
solution in demand-side management to tackle uncertainties and 
contingencies.  

- For the first time, the linear-hybrid-coordinated mathematical 
framework of distributed ESs and EVs parking lot in the renewable 
MG as FRs and ALs are presented. The proposed framework speeds 
up finding the best feasible solution and reduces response error, by 
transforming the MINLP form of the optimization problem into the 
MILP form using the linear approximation-based convex relaxation 
methods.  

d. Paper Organization 

The remaining parts of the paper are outlined as follows: Section 2, 
presents the original and linearized modeling of the proposed optimal 

scheduling. Section 3 expresses the HSRO framework of the proposed 
solution in 2 separate parts of stochastic and BURO. In Section 4, the 
numerical results including dataset, system setup, and the study results 
are presented. Finally, Section 5 concludes the paper. 

2. Proposed problem formulation 

2.1. Original model 

A) Objective function: The objective function of the proposed 
problem is stated in (1a) which consists of 4 parts. The first part refers to 
the expected energy cost received from the upstream network. Also, 
reliability cost (lost load) is mentioned in the second part of the objec-
tive function, which is proportional to the value of lost load (VOLL) and 
expected energy not supplied (EENS). In addition, the third and fourth 
parts are dealing with flexibility and security benefits, respectively. Note 
that in this paper, flexibility as an operational option means the ability 
of MG in response to small/large fluctuations, while following technical 
and economic requirements set by the MGO. Also, flexibility is consid-
ered from an economic perspective, which is the benefit of flexibility. 
This profit is considered as the product of flexibility incentive price (FIP) 
and flexibility energy (FE), and the FE depends on the flexibility ca-
pacity. Therefore, due to the purpose of the study, FE is considered as the 
upward and downward potential capacities of FRs. The security benefit 
is also calculated by multiplying the security incentive price (SIP) and 
security energy (SE). It is noteworthy that FE or SE is the amount of 
energy required to provide the demanded flexibility or security for a 
MG. Also, FIP and SIP are incentive mechanisms for encouraging FRs to 
participate in flexibility procurement. 

F =min
∑

h∈T

(
∑

s∈S
ξsρDS

h,s DSP
ref ,h,s

)⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
Operating cost

+
∑

s∈S
ξs ×VOLL×EENSs

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
Reliability cost 

−
∑

s∈S
ξs ×FIP×FEs

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
Flexibility benefit

−
∑

s∈S
ξs ×SIP×SEs

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞
Security benefit

. (1a) 

B) Microgrid constraints: These constraints are including power 
flow equations, (2a)–(6a), and microgrid technical constraints, (7a)– 
(10a) [42]. The power flow equations also refer to the active and reac-
tive power balance in each bus, (2a) and (3a), lines’ active and reactive 
power, (4a) and (5a), and the amount of slack bus angle, (6a). In these 
equations, it is assumed that the MG at the slack bus (ref.) is connected 
to the upstream distribution station. Hence, the DSP and DSQ values in 
other buses are equal to zero. It should also be mentioned that ESs and 
EVs batteries are modeled as ALs in (2a) and (3a), where the positive/ 
negative value of their active power variables corresponding to the 
charge/discharge mode, and for their reactive power variables means 
inductive/capacitive mode. 

Not that load models can be categorized into three types: static, 
dynamic, and composite models. The static characteristics of the load 
can be classified into constant impedance (Z), constant current (I) and 
constant power (P) load, depending on the power relation to the voltage. 
The static ZIP load model as a well-known model in the power system, 
represents the relationship between the active and reactive power as a 
function of the applied voltage. Therefore, the ZIP load model can be a 
suitable counterpart for the NCLs model, wherein it is assumed that the 
consumption of NCL serially connected to the ES output, can be 
managed by the ES voltage controlling as per equations (2a) and (3a). 
On the other hand, because the ES uses the IGBT bridge converter, the 
NCL connected to the bridge can be modeled as constant impedance/ 
current/power or a combination of these models [43–45]. Therefore, the 
ZIP model is used for the NCL as a comprehensive model that covers all 
types of NCL models [11,38]. Hence, the term Bc is equal to one for buses 
with ES, owing to the ZIP model, otherwise, it is zero. Also, the technical 
limitations of the MG are expressed in (7a)–(10a), which indicate 
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respectively the allowed range of lines capacity, distribution station 
capacity, buses voltage magnitude and the voltage limit of buses con-
taining critical loads (CLs). 

DUS
x,h,s + DSP

x,h,s
− ESP

x,h,s − EVP
x,h,s −

∑

x∈N
Ax,yLP

x,y,h,s 

= DP
x,h,s(1 − MES

x ) + MES
x DP

x,h,s

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Zp

(
Vx,h,s

V0
x,h,s

)2

+Ip

(
Vx,h,s

V0
x,h,s

)

+ Pp

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

− RESx,h,s ∀ x, y, s.

(2a)  

DSQ
x,h,s − ESQ

x,h,s − EVQ
x,h,s −

∑

x∈N
Ax,yLQ

x,y,h,s 

= DSQ
x,h,s(1 − MES

x ) + MES
x DSQ

x,h,s

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Zq

(
Vx,h,s

V0
x,h,s

)2

+Iq

(
Vx,h,s

V0
x,h,s

)

+ Pq

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∀ x, h, s. (3a)  

LP
x,y,h,s = gx,y

(
Vx,h,s

)2
− Vx,h,sVy,h,s

(
gx,ycos

(
θx,h,s − θy,h,s

)
+ bx,ysin

(
θx,h,s

− θy,h,s
) )

∀ x, y, h, s. (4a)  

LQ
x,y,h,s = − bx,y

(
Vx,h,s

)2
− Vx,h,sVy,h,s

(
bx,ycos

(
θx,h,s − θy,h,s

)
− gx,ysin

(
θx,h,s

− θy,h,s
) )

∀ x, y, h, s.

(5a)  

θx,h,s = 0 ∀ x = ref , h, s. (6a)  

(
LP

x,y,h,s

)2
+

(
LQ

x,y,h,s

)2
⩽

(
SL

U,x,y

)2
∀ x, y, h, s. (7a)  

(
DSP

x,h,s

)2
+

(
DSQ

x,h,s

)2
⩽

(
SDS

U,x

)2
∀ x, h, s. (8a)  

VL,x⩽Vx,h,s⩽VU,x ∀ x ∈ N, h, s. (9a)  

VCB
L,x ⩽Vx,h,s⩽VCB

U,x ∀ x ∈ CB, h, s. (10a) 

C) Electric spring constraints: The mathematical model of ES in the 
MG is presented in (11a)–(16a), which represent power balance between 
the ES’s battery and its output, (11a), ES converter loss, (12a), stored 
energy in the ES battery, (13a), ES battery charge/discharge rate limit, 
(14a), ES battery energy limit, (15a), and ES capacity (16a). 

ESP
x,h,s = ESP

L,x,h,s + ESP
B,x,h,s ∀ x ∈ ES, h, s. (11a)  

ESP
L,x,h,s = α

⃒
⃒
⃒ESP

x,h,s

⃒
⃒
⃒ + β

⃒
⃒ESQ

x,h,s

⃒
⃒ ∀ x ∈ ES, h, s. (12a)  

ESE
B,x,h,s = ESE

B,x,h−1,s + ESP
B,x,h,s ∀ x ∈ ES, h, s. (13a)  

ESP
B,L,x⩽ESP

B,x,h,s⩽ESP
B,U,x ∀ x ∈ ES, h, s. (14a)  

ESE
B,L,x⩽ESE

B,x,h,s⩽ESE
B,U,x ∀ x ∈ ES, h, s. (15a)  

(
ESP

x,h,s

)2
+

(
ESQ

x,h,s

)2
⩽

(
ESS

U,x

)2
∀ x ∈ ES, h, s. (16a) 

D) Electric vehicle parking constraints: Equations (17a)–(23a) state 
the mathematical model of the integration of EVs into the MG [46]. 
Constraints (17a)–(20a) represent respectively the power balance between 
the EVs’ battery and its output, the EVs’ charger losses, the energy stored 
in the EVs’ battery and the EV’s battery charge/discharge limit. Also, 
constraints (21a)–(23a) express EVs’ battery energy at arrival and 

departure time, and EVs’ charger capacity. It should be mentioned that the 
total charge/discharge rate of EVs parking lot at each moment is equal to 
the sum of the charge/discharge rate of each EV existed in the parking lot. 
Also, the charger capacity of the parking lot at time h is equal to the total 
capacity of the available EVs in the parking lot. In addition, EVE

Arr,h is equal 
to 

∑NIh
i=1SOCi × BCi that the terms SOC and BC are respectively the state of 

charge (SOC) and battery capacity of the i-th EV, where NIh represents the 
number of EVs connected to the MG at time h. Also, EVE

Dep,h is equal to 
∑NFh

i=1 BCi, where NFh is the number of EVs that are disconnected at time h. 

EVP
x,h,s = EVP

B,x,t,s + EVP
L,x,h,s ∀ x, h, s. (17a)  

EVP
L,x,h,s = λ

⃒
⃒
⃒EVP

x,h,s

⃒
⃒
⃒ + γ

⃒
⃒EVQ

x,h,s

⃒
⃒ ∀ x, h, s. (18a)  

EVE
B,x,h,s = EVE

B,x,h−1,s + EVP
B,x,h,s ∀ x, h, s, EVE

B,x,h,s⩾0. (19a)  

EVP
B,L⩽EVP

B,x,h,s⩽EVP
B,U ∀ x, h, s. (20a)  

EVE
B,x,h,s = EVE

Arr,x,h,s ∀ x, h = Arrival time, s. (21a)  

EVE
B,x,h,s = EVE

Dep,x,h,s ∀ x, h = Departure time, s. (22a)  

(
EVP

x,h,s

)2
+

(
EVQ

x,h,s

)2
⩽

(
EVS

U,x,h,s

)2
∀ x, h, s. (23a) 

E) MG flexibility constraints: This section is dedicated to introduce 
an index for calculating the flexibility amount of FRs. This index quantifies 
the flexibility of the FRs and network individually against uncertainty 
resources [47]. The flexibility index for FRs including ESs and EVs is 
characterized as upward and downward flexibility. If the output power of 
the FRs in scenario s is greater than the base scenario, there is upward 
flexibility, otherwise, it is downward flexibility. Therefore, the upward 
and downward power flexibilities for ES and NCL arising from ES battery 
and NCL control are calculated by (24a) and (25a), and for EVs, it is ob-
tained based on (26a). Moreover, the flexibility energy (FE) of the MG is 
calculated by (27a). It should be stated that scenario “1′′ is pertained to the 
base case that uses forecasted (normal) value for uncertain parameters. 

ESF
U,x,h,s −ESF

L,x,h,s = ESP
x,h,s −ESP

x,h,1 ∀x∈ES,h,s&ESF
U,x,h,s,ESF

L,x,h,s⩾0. (24a)  

NCLF
U,x,h,s −NCLF

L,x,h,s =MES
x DP

x,h,s

(

Zp

(
Vx,h,s

V0
x,h,s

)2

+Ip

(
Vx,h,s

V0
x,h,s

)

+Pp

)

−MES
x DP

x,h,1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Zp

(
Vx,h,1

V0
x,h,1

)2

+

Ip

(
Vx,h,1

V0
x,h,1

)

+Pp

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∀x,h,s&NCLF
U,x,h,s,NCLF

L,x,h,s⩾0. (25a)  

EVF
U,x,h,s − EVF

L,x,h,s = EVP
x,h,s − EVP

x,h,1 ∀ x, h, s & EVF
U,x,h,s, EVF

L,x,h,s⩾0. (26a)  

FEs =
∑

x,h
ESF

U,x,h,s + ESF
L,x,h,s + NCLF

U,x,h,s + NCLF
L,x,h,s + EVF

U,x,h,s + EVF
L,x,h,s.

(27a) 

F) MG reliability constraints: In this paper, the EENS index for 
reliability assessment is used as presented in (28a). Also, the limitation 
of the unsupplied active load is expressed as (29a) [48]. 

EENSs =
∑

x,h
DUS

x,h,s ∀ s. (28a)  

0⩽DUS
x,h,s⩽DP

x,h,s ∀ x, h, s. (29a) 

G) Security constraints: Voltage security, as a vital index in optimal 
scheduling of MG, is defined by (30a)–(31a). It is determined by voltage 
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stability margin (VSM) through different methods [42]. In this paper, the 
VSM is calculating via the voltage stability index, i.e., the SI-index method. 
In this method, the weakest voltage bus or worst SI (WSI) is firstly specified 
and then the WSI is determined by (30a). In constraint (30a), Vwb-1 is the 
voltage at the sending end bus, LP

wb−1,wb and LQ
wb−1,wb are respectively active 

and reactive power in line between buses wb-1 and wb. The SI-index value 
changes between 0 (voltage collapse) and 1 per unit (p.u.) (no-load con-
dition) in the hourly operation of MG. Also, it varies from 0 to 24 in daily 
operation. The voltage security is limited by (31a), and the required energy 
to improve MG security is formulated as (32a) in which RESs, ESs (their 
battery and NCL control part) and EVs form the security energy. 

WSIh,s =
(
Vwb−1,h,s

)4 - 4
(
Vwb−1,h,s

)2

⎛

⎜
⎝

Rwb−1,wbLP
wb−1,wb,h,s

+Xwb−1,wbLQ
wb−1,wb,h,s

⎞

⎟
⎠

- 4

⎛

⎜
⎝

Xwb−1,wbLP
wb−1,wb,h,s+

Rwb−1,wbLQ
wb−1,wb,h,s

⎞

⎟
⎠

2

∀ h, s.

(30a)  

WSIh,s⩾ WSIL ∀ h, s. (31a)  

SEs =
∑

x,h
RESx,h,s − ESP

x,h,s − EVP
x,h,s− MES

x DP
x,h,s

(

1 −

(

Zp

(
Vx,h,s

V0
x,h,s

)2

+ Ip

(
Vx,h,s

V0
x,h,s

)

+ Pp

) )

∀ s. (32a)  

2.2. Linear model 

In the original model, equations (2a)–(5a), (7a), (8a), (12a), (16a), 
(18a), (23a), (25a), (30a) and (32a) are non-linear and equations (4a) 
and (5a) are non-convex [49]. Therefore, the problem is a non-convex 
NLP that in the best condition can reach the locally optimal solution. 
It is generally calculated by numerical methods such as Newton Raphson 
or evolutionary algorithms, so it will be difficult and take considerable 
time to solve the problem. Besides, in large-scale and complex problems, 
achieving a feasible solution will be very time-consuming and hard. 
Therefore, the main problem is transformed into a linear counterpart by 
conventional methods. The details of this process are as follows: 

A) Linearization of power flow equations: Based on the linearization 
theorems expressed in the piecewise linearization method, and assuming 
that the voltage difference between two ending buses of a distribution line is 
always less than 6 degrees or 0.105 rad, the linear format of power flow 
equations, (2a)–(5a), and the voltage limit of the buses, (9a)–(10a), will be 

as (1b)–(6b). More details of the linearization process can be found in 
[49,50]. 

DUS
x,h,s + DSP

x,h,s
− ESP

x,h,s − EVP
x,h,s −

∑

y∈N
Ax,yLP

x,y,h,s 

= DP
x,h,s(1 − MES

x ) + MES
x DP

x,h,s

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Zp

⎛

⎜
⎝

(VL)
2

+
∑

u∈L
sluΔVu

(
V0

x,h,s

)2

⎞

⎟
⎠

+Ip

⎛

⎜
⎝

(VL) +
∑

u∈L
sluΔVu

V0
x,h,s

⎞

⎟
⎠

+Pp

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

− RESx,h,s ∀ x, h, s. (1b)  

DSQ
x,h,s − ESQ

x,h,s − EVQ
x,h,s −

∑

y∈N
Ax,yLQ

x,y,h,s 

= DQ
x,h,s(1 − MES

x ) + MES
y DQ

x,h,s

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Zq

⎛

⎜
⎝

(VL)
2

+
∑

u∈L
sluΔVu

(
V0

x,h,s

)2

⎞

⎟
⎠

+Iq

⎛

⎜
⎝

(VL) +
∑

u∈L
sluΔVu

V0
x,h,s

⎞

⎟
⎠ + Pq

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∀ x, h, s.

(2b)  

LP
x,y,h,s =gx,y

(
∑

u∈L
(slu −VL)ΔVx,h,s,u −VLΔVy,h,s,u

)

−(VL)
2bx,y

(
θx,h,s

−θy,h,s
)

∀ x,y,h,s. (3b)  

LQ
x,y,h,s = −bx,y

(
∑

u∈L
(slu − VL)ΔVx,h,s,u − VLΔVy,h,s,u

)

−(VL)
2gx,y

(
θx,h,s

− θy,h,s
)

∀ x,y,h,s. (4b)  

0⩽ΔVx,h,s⩽ΔVU,x ∀ x ∈ N, h, s. (5b)  

0⩽Vx,h,s⩽ΔVCB
U,x ∀ x ∈ CB, h, s. (6b) 

Where, ΔVU and ΔVCB
U are equal to (VU − VD)/nu and 

(
VCB

U − VCB
L

)/
nu 

respectively, where nu is the total number of linear pieces. Equations (25a) 
and (32a) will also be transformed into linear equations, (7b)–(8b), based 
on the assumptions in this section. 

NCLF
U,x,h,s −NCLF

L,x,h,s =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

MES
x DP

x,h,s

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Zp

⎛

⎜
⎝

(VL)
2
+

∑

u∈L
sluΔVx,h,s,u

(
V0

x,h

)2

⎞

⎟
⎠

+Ip

⎛

⎜
⎝

(VL)+
∑

u∈L
sluΔVx,h,s,u

V0
x,h

⎞

⎟
⎠+Pp

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−MES
i DP

i,t,1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Zp

⎛

⎜
⎝

(VL)
2
+

∑

u∈L
sluΔVx,h,1,u

(
V0

x,h

)2

⎞

⎟
⎠

+Ip

⎛

⎜
⎝

(VL)+
∑

u∈L
sluΔVx,h,1,u

V0
x,h

⎞

⎟
⎠+Pp

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∀x,h,s. (7b)   
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SEs =
∑

x,h
RESx,h,s − ESP

x,h,s − EVP
x,h,s+ MES

x DP
x,h,s 

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

MES
x DP

x,h,s

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Zp

⎛

⎜
⎝

(VL)
2

+
∑

u∈L
sluΔVx,h,s,u

(
V0

x,h

)2

⎞

⎟
⎠

+Ip

⎛

⎜
⎝

(VL) +
∑

u∈L
sluΔVx,h,s,u

V0
x,h

⎞

⎟
⎠ + Pp

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∀ x, h, s.

(8b) 

B) Linearization of circular equations: Equations (7a), (8a), (16a) 
and (23a) are circular constraints in P and Q coordinates with the center 
of zero and the maximum radius of S. Based on [19], a circular plane can 
be approximated by a polygon plane with nk edge, which each edge 
corresponds to a line equation. This equation for the k-th edge of poly-
gon is equal to the tangent line equation of edge k at k × 2π/nk angle. 
Therefore, the linear format of circular equations will be as follows: 

cos
(

k ×
2π
nk

)

LP
x,y,h,s + sin

(

k ×
2π
nk

)

LQ
x,y,h,s⩽LS

U,x,y ∀ x, y, h, s. (1c)  

cos
(

k ×
2π
nk

)

DSP
x,h,s + sin

(

k ×
2π
nk

)

DSQ
x,h,s⩽DSS

U,x ∀ x, h, s. (2c)  

cos
(

k ×
2π
nk

)

ESP
x,h,s + sin

(

k ×
2π
nk

)

ESQ
x,h,s⩽ESS

U,x ∀ x ∈ ES, h, s. (3c)  

cos
(

k ×
2π
nk

)

EVP
x,h,s + sin

(

k ×
2π
nk

)

EVQ
x,h,s⩽EVS

U,x,h,s ∀ x, h, s. (4c) 

C) Linearization of the absolute terms: For the linear format of 
equations (12a) and (18a), which have the absolute term of active and 
reactive power of ESs and EVs, each variable is divided into two positive 
and negative components. The positive component of active and reac-
tive power is introduced as discharge and capacitive powers, and the 
negative component of active and reactive power is considered as charge 
and inductive powers. It is noteworthy that these variables have positive 
value, so the linear model of equations (12a) and (18a) will be written as 
follows: 

ESP
L,x,h,s = α

(
ESP

Disch,x,h,s − ESP
Char,x,h,s

)
+ β

(
ESQ

Cap,x,h,s − ESQ
Ind,x,h,s

)
∀ x

∈ ES, h, s.

(1d)  

EVP
L,x,h,s = λ

(
EVP

Disch,x,h,s − EVP
Char,x,h,s

)
+ γ

(
EVQ

Cap,x,h,s

− EVQ
Ind,x,h,s

)
∀ x, h, s. (2d)  

0⩽ESP
Disch,x,h,s⩽ESS

U,x ESν
x,h,s ∀ x ∈ ES, h, s. (3d)  

0⩽ESP
Char,x,h,s⩽ESS

U,x

(
1 − ESν

x,h,s

)
∀ x ∈ ES, h, s. (4d)  

0⩽ESQ
Cap,x,h,s⩽ESS

U,x ESx
x,h,s ∀ x ∈ ES, h, s. (5d)  

0⩽ESQ
Ind,x,h,s⩽ESS

U,x

(
1 − ESx

x,h,s

)
∀ x ∈ ES, h, s. (6d)  

0⩽EVP
Disch,x,h,s⩽EVS

U,x,h,s EVν
x,h,s ∀ x, h, s. (7d)  

0⩽EVP
Char,x,h,s⩽EVS

U,x,h,s

(
1 − EVν

x,h,s

)
∀ x, h, s. (8d)  

0⩽EVQ
Cap,x,h,s⩽EVS

U,x,h,s EVx
x,h,s ∀ x, h, s. (9d)  

0⩽EVQ
Ind,x,h,s⩽EVS

U,x,h,s

(
1 − EVx

x,h,s

)
∀ x, h, s. (10d) 

D) Linearization of voltage security equation: In Equation)30a(, 
due to the small amount of MG lines’ reactance against the resistance, 
the third term versus the second term has a small amount and can be 
ignored. Also, in the second part, V2 is equal to (VL)

2
+

∑
u∈LsluΔVu, but 

note that since the product of ΔV by the other variables leads to a very 
small value, so in the second part of (30a) only the term (VL)

2 can be 
replaced by V2. Finally, according to the linear method, the WSI equa-
tion can be approximated as follows: 

WSIt,s = (VL)
4

+
∑

u∈L
mluΔVwb−1,h,s,u − 4(VL)

2

⎛

⎜
⎝

Rwb−1,wbLP
wb−1,wb,h,s

+Xwb−1,wbLQ
wb−1,wb,h,s

⎞

⎟
⎠ ∀ h, s

(1e) 

Where, ml represents the slope of the line. Finally, the linear model of 
the proposed problem is defined as follows: 

Objectivefunction(1a) (1f) 

Subject to: 
(6a), (11a), (13a)–(15a), (17a), (19a)–(22a), (24a),(26a)–(29a), 

(31a), (1b)–(7b), (1c)–(4c), (1d)–(10d), (1e).(2f) 

3. HSRO framework 

In this section, a hybrid stochastic/robust model is intended for 
modeling uncertain parameters. In this model, parameters such as en-
ergy price, ρDS, active and reactive power of load, DP and DQ, renewable 
energy sources power, RES, and equipment availability based on forced 
outage rates (FOR) are modeled in the stochastic form. This approach is 
due to the fact that to obtain a more accurate EENS index many sce-
narios need to be considered, and the EENS is dependent on the amount 
of these parameters. In addition, the EVs’ uncertain parameters 
including the charging and discharging rate of EV, EVP

B.U and EVP
B.L, 

maximum EV charger capacity, EVS
U, arrival and departure energy of EV, 

EVE
Arr and EVE

Dep, are analyzed in the robust framework. Because another 
purpose of this paper is to consider the robust ability of EVs in enhancing 
the flexibility, security, and reliability of the MG in the worst-case sce-
nario of uncertainty. 

A) Stochastic framework: This section is aimed to present the UT 
method as an efficient tool for uncertainty modeling in the stochastic 
framework. It should be stated that the UT method requires much fewer 
runs than other methods such as Monte Carlo simulation (MCS) and 
analytical methods for convergence; Therefore, the computational 
burden and calculation time are significantly reduced. Also, unlike 
analytical methods, the proposed approach does not require any math-
ematical assumptions for model simplification. Additionally, the UT 
method as one of the approximation-based methods which are suitable 
for modeling uncertainties due to its ability in non-linear correlated/ 
uncorrelated transitions [51,52], acceptable PDF estimation and simple 
coding is employed in this paper. In this case, the mentioned stochastic 
uncertain parameters are modeled by the UT technique in which n, as 
the dimension of input uncertain parameters vector (U), is equal to 5. In 
this method, the total number of scenarios created is 2n + 1, which it is 
equal to 11 scenarios for the proposed problem. 

Therefore, due to the small number of scenarios produced in this 
method, there is no need to use scenario reduction methods to reduce 
the computational burden and calculation time. Further details on this 
method, including the formulation and implementation algorithm, are 
presented in detail in [51]. 

B) Uncertainty bounded robust optimization framework: In this 
robust method, unlike the SBSP method, there is no scenario sampling 
process, but instead, the space of uncertainty is limited to an uncertainty 
set. It reaches the best solution that is feasible for all realizations of 
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uncertainties that lie in the uncertainty space under consideration. In 
other words, in this method, the uncertain parameters are modeled as 
the boundary range, and then according to the problem and position of 
the uncertain parameter in the original model, the amount of that 
parameter is obtained in the worst-case scenario. Finally, the main 
optimization process is performed for the worst-case scenario. It should 
be noted that in order to integrate the problem, determine the uncertain 
parameters and variables of the problem simultaneously, BURO con-
straints are added to the basic problem related to the worst-case 
scenario. 

All uncertain EV’s parameters in this method are in the range of (1 ±

σ) × X in which σ⩾0 is considered as the uncertainty level of forecasted 
parameter (X). It should be noted that the problem has a robust solution 
if the following conditions are met [18,19]:  

1- The basic problem contains a feasible solution.  
2- For the true values of uncertain parameters, the model inequality 

constraints with the maximum error of δ × max[i, |X|] are satisfied, 
where δ ≥ 0 is the feasibility tolerance and it allows a small amount 
of infeasibility in the uncertain inequality. 

Note that according to the stated robust theory, equations (21a)– 
(22a), (4c), (7d)–(10d) are respectively converting to equations (1g)– 
(9g). 

EVP
B,L,x,h,1 + σ

⃒
⃒
⃒EVP

B,L,x,h,1

⃒
⃒
⃒ − δ × max

(
h, EVP

B,L,x,h,1

)
⩽EVP

B,x,h,s⩽EVP
B,U,x,h,1 

−σ
⃒
⃒
⃒EVP

B,U,x,h,1

⃒
⃒
⃒ + δ × max

(
t, EVP

B,U,x,h,1

)
∀ x, h, s. (1g)  

EVE
B,x,h,s⩾EVE

Arr,x,h,1 + σ
⃒
⃒
⃒EVE

Arr,x,h,1

⃒
⃒
⃒ − δ × max

(
h, EVE

Arr,x,h,1

)
∀ x, h

= Arrival time, s. (2g)  

EVE
B,x,h,s⩾EVE

Dep,x,h,1 + σ
⃒
⃒
⃒EVE

Dep,x,h,1

⃒
⃒
⃒ − δ × max

(
t, EVE

Dep,x,h,1

)
∀ x, h

= Departure time, s. (3g)  

cos
(

k ×
2π
nk

)

EVP
x,h,s + sin

(

k ×
2π
nk

)

EVQ
x,h,s⩽EVS

U,x,h,1 − σ
⃒
⃒
⃒EVS

U,x,h,1

⃒
⃒
⃒ + δ

× max
(

h, EVS
U,x,h,1

)
∀ x, h, s. (4g)  

EVP
Disch,x,h,s − EVS

U,x,h,1EVν
x,h,s − σ

⃒
⃒
⃒EVS

U,x,h,1

⃒
⃒
⃒EVν

x,h,s⩽0 ∀ x, h, s. (5g)  

EVP
Char,x,h,s + EVS

U,x,h,1EVν
x,h,s + σ

⃒
⃒
⃒EVS

U,x,h,1

⃒
⃒
⃒EVν

x,h,s⩽EVS
U,x,h,1 

−σ
⃒
⃒
⃒EVS

U,x,h,1

⃒
⃒
⃒ + δ × max

(
t, EVS

U,x,h,1

)
∀ x, h, s. (6g)  

EVQ
Cap,x,h,s − EVS

U,x,h,1EVx
x,h,s − σ

⃒
⃒
⃒EVS

U,x,h,1

⃒
⃒
⃒EVx

x,h,s⩽0 ∀ x, h, s. (7g)  

EVQ
Ind,x,h,s + EVS

U,x,h,1EVx
x,h,s + σ

⃒
⃒
⃒EVS

U,x,h,1

⃒
⃒
⃒EVx

x,h,s⩽EVS
U,x,h,1 − σ

⃒
⃒
⃒EVS

U,x,h,1

⃒
⃒
⃒ + δ

× max
(

x, EVS
U,x,h,1

)
∀ x, h, s.

(8g) 

It is noteworthy that according to Section 3-A, in equations (1g)–(8g) 
and (1h)–(2h) for the parameters corresponding to the forecasted sce-
nario (normal), the subscript “1′′ is used for the EV’s parameters in these 
equations. In addition, the proposed robust model is applied to the un-
equal constraints in the standard form, hence, the inequality (≥) is 
replaced with equality in (4g) and (5g), because, in a problem with 
minimizing the objective function, the equality constraint can be 
equivalent to inequality. Therefore, the final format of the proposed 
model can be expressed as follows: 

Objective function (1a) (1h) 

Subject to: 

(6a), (11a), (13a) − (15a), (17a), (19a), (24a), (26a) − (29a), (31a),

(1b) − (7b), (1c) − (3c), (1d) − (6d), (1e), (1g) − (8g). (2h) 

Finally, the flowchart of the proposed model is expressed as Fig. 2. 

4. Numerical results 

4.1. Dataset and system setup 

The power management strategy based on hybrid stochastic/robust 
optimization is implemented on 32-bus radial MG with the base values 
of 1 MW and 12.66 kV, as shown in Fig. 3 [53]. The specifications of 
lines and peak load hour (20:00) are stated in [11]. Also, the amount of 
load at other hours is equal to the peak load multiplied by the daily load 
factor curve, whose predicted load values at different hours are based on 
the load data of Rafsanjan city in Iran, which is depicted in Fig. 4(a). The 
MG has two types of RESs, solar and wind systems. The capacity of the 
solar system is 2 MW and the capacity of wind systems at buses 10 and 
14 are 1.5 MW and 1.8 MW, respectively. Also, the daily energy price 
curve is taken from [11], wherein the energy price is 16 $/MWh during 
1:00–8:00, 24 $/MWh at the periods of 9:00–17:00 and 23:00–24:00, 
and it is presumed 30 $/MWh for the hours from 18:00 to 22:00. The 
ESs’ location and other specifications are assumed to be based on the 
performed optimal planning in [11], where the ESs are placed at buses 1, 
2, 3, 10, 11, 12, 13, 14, 15, 18, 19 and 22, with the sizing in the range of 
0–10 MWh. It is worth noting that the CLs are in all buses where the ESs 
exist, and critical buses consist of 6, 7, 8, 9, 20, 21, 25, 26, 27 and 28. 

The acceptable voltage limit in the MG on the basis of international 
Standards ANSI C84.1–2006 and IEEE std 1250–1995, for non-critical 
buses is specified from 0.9 to 1.05 p.u., while that of critical buses is 
intended in the range of 0.97–1 p.u [54]. It is also assumed that all buses 
in the MG have EVs parking lot, for which the number of EVs per bus is 
based on [19]. Other specifications of the EVs such as SOC, battery ca-
pacity, charging rate, charging capacity, etc. are mentioned in [32]. 
Also, the loss coefficients for EVs charger, λ and γ, are similar to ESs loss 

Fig. 2. Flowchart of the proposed model.  
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coefficients, α and β, which are assumed to be 0.09 and 0.0475 [37], 
respectively. Finally, it should be noted that the value of VOLL, SIP and 
FIP are set at 100 $/MWh, 10 $/MWh and 10 $/MWh, respectively. 
Also, the FOR is considered to be 1% for each MG equipment such as 
distribution lines and distribution station. 

4.2. Results and discussions 

The proposed problem is simulated in the GAMS software environ-
ment [55]. It should be stated that the number of linearization segments 
of the piecewise method and circular constraints is 5 and 45, respec-
tively [50]. 

A) Evaluation of different solvers: Table 2 enumerates the 
convergence results of the NLP and MILP models for the proposed 
problem in case of HSRO(σ = 0, δ = 0). For the non-linear model in this 
section, four solvers comprising CONOPT, IPOPT, SNOPT and MINOS 
are selected in the GAMS software. It can be seen from Table 2 that the 
NLP model solvers have different convergence iteration, computational 
time, objective function and model status, despite having the same 
number of equations and variables. Therefore, the NLP model solvers do 
not have a unique answer, it is also seen that the best solver for the non- 
linear model of the proposed problem is IPOPT. Because it has been able 
to achieve the lowest objective function in the shortest possible time 
compared to other NLP solvers in the setting of locally optimal model 
status. Also, the selected solvers for the proposed MILP model in this 
section are CPLEX, CBC, and CONOPT. As it can be seen from Table 2 all 
the solvers have a unique response and globally optimal model status. 
However, the calculation time by the CPLEX solver is smaller than that 

Fig. 3. Single line diagram of the test 32-bus microgrid.  

Fig. 4. Daily curve of a) RESs and load powers percentage, b) Energy price.  

Table 2 
The results of the different proposed formulations for the model convergence in HSRO(σ = 0, δ = 0).  

Model NLP MILP 

Solver CONOPT IPOPT SNOPT MINOS CPLEX CBC CONOPT 

Total number of equations 612,731 612,731 612,731 612,731 727,682 727,682 727,682 
Total number of variables 211,932 211,932 211,932 211,932 284,162 284,162 284,162 
Convergence iteration 891 347 – – 1242 75 327 
Calculation time (s) 725 671 – – 21.48 27.23 32.44 
Objective function ($) −411.68 −578.36 – – ¡615.08 −615.08 −615.08 
Model status LO LO I I GO GO GO 

LO: Locally optimal, GO: Globally Optimal, I: Infeasible 
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of CBC and CONOPT. Therefore, it can be stated that the MILP model has 
a more reliable response rather than the non-linear model and the best 
solver is the CPLEX which has the lowest calculation time. 

Table 3 shows the amounts of operational, flexibility, reliability, 
security and economic indices in the MG based on MILP model in HSRO 
(σ = 0, δ = 0) for the following case studies: 

Case I: Power flow analysis 
Case II: Power flow analysis considering RESs 
Case III: Optimal power flow analysis considering RESs and EVs ac-
cording to PMS 
Case IV: Optimal power flow analysis considering RESs, EVs and ESs 
according to PMS 

The given table reveals that RESs in the MG (Case II) raises the MG 
energy losses compared to its absence (Case I), and it also reduces the 
voltage deviation in the MG, however, the overvoltage of the MG in-
creases compared to case I due to the high active power injection of the 
RESs. The presence of EVs parking in Case III reduces the energy loss and 
maximum voltage deviation/overvoltage in the MG compared to Case II. 
The reason for this is that EVs due to energy transition and storage ca-
pabilities have dispatched RESs output power in a more effective way 
relative to Case II. Thus, the injected power into the MG from the up-
stream distribution station has been reduced. This case demonstrates the 
advantage of managing the EVs and local resources operation in the MG. 
Note that due to EVs demanded energy from the MG in Case III, the 
energy loss, in this case, is higher than that of Case I. 

€Finally, the presence of ESs in Case IV has able to obtain a better 
operating condition to the MG than any other cases, there is the least 
amount of energy loss and maximum voltage deviation in this case 
because of effective power management among the local components of 
the MG. Although the overvoltage in Case IV is slightly higher than Case 
I, it is notably reduced in comparison with the other two cases. 

As shown in Table 3, the highest amount of EENS occurs in Case I, 
which does not have any local resources such as RES, EVs and ESs, but 
with the presence of more local resources in the MG, the EENS rate is 
significantly reduced so that Case IV has the lowest amount of EENS 
(3.78 MWh) than any other cases. This analysis is also valid for the MG 
voltage security and flexibility indices, the increase of local and flexi-
bility resources in the MG could increase the WSI index and provide 
notable SE and FE values for the MG. Hence, in Case IV, the maximum 
possible values of WSI, SE and FE are calculated due to the superior 
performance of ES in the MG. Also, the highest voltage deviation in Case 

I is related to bus 18, hence this bus is known as poor voltage bus (PVB) 
in Case I. But in other cases, considering the location of RESs, EVs and 
ESs, bus 33 is known as PVB. 

Finally, economic indices such as the price of energy received from 
the upstream network (MG operating cost), reliability cost, security and 
flexibility benefits and total cost of the proposed scheme have been 
expressed in rows 9–13 of Table 3, respectively. As is presented, Case I 
due to the lack of local resources in the MG only contains operational 
and reliability costs. With the addition of RESs to the MG (Case II), in 
addition to reliability and operational costs that have been reduced 
compared to Case I, due to the injection of RESs into the MG, the pro-
posed scheme has reached revenue from providing voltage security. 
Therefore, the total cost of Case II has reduced by approximately 92.86% 
with respect to Case I. In Case III, the operating cost, due to the increased 
demand of power from the MG by EVs, increases relative to Case II, but 
as EVs can reduce EENS, the cost of reliability in Case III is lower than 
Cases II and I. In contrast, in Case III because of the presence of RESs as a 
source of voltage security, and EVs as a source of flexibility and voltage 
security, the benefits of deploying security and flexibility in the MG 
decreases the total cost in this case with regard to Case II by 97.25%. 
Eventually, the entrance of ESs into the MG brings higher revenues and 
lower costs for Case IV than other cases, so that the revenues outweigh 
the costs and the proposed PMS reaches 615.08 $ profit from the optimal 
scheduling of local resources. Therefore, based on the results of Table 3, 
it can be stated that by applying appropriate PMS to the local MG re-
sources, in addition to enhancing technical indices, can also acquire the 
financial gain for the MG in market environments. 

Evaluation of indices in three HSRO(σ,δ) scenarios for Cases III and 
IV are listed in Table 4. The given table shows that in two cases, 
increasing the level of uncertainty (σ) in the HSRO model compared to 
the deterministic model, HSRO(0,0), reduces the maximum overvoltage 
and increases the energy loss and maximum voltage deviation in the MG. 
Concerning the reliability, voltage security and flexibility indices, 
increasing the level of uncertainty would increase EENS, and also 
decrease WSI, SE and FE rather than the HSRO(0,0) scenario. In relation 
to economic indices it is also observed that as the level of uncertainty 
increases, due to increasing energy and reliability costs and declining 
flexibility and security revenues, the total cost increases significantly. 
These results are arising from the reduction of RESs output, the increase 
of load and EVs demand, and reducing EVs active and reactive power 
discharging capacities in case of HSRO(0.1,0) corresponding to (1g)– 
(8g). On the other hand, increasing feasibility tolerance (δ) will increase 
the feasibility space of the problem, inasmuch as the results are the 
opposite of increasing σ. Finally, the presence of ESs in Case IV, scenario 
HSRO(0,0.1), brings the optimal values for all indices. 

B) Analysis of MG indices: In this section, the indices curves of 
security, flexibility, reliability and economic, based on the incentive 
prices (SIP and FIP) and VOLL penalty price corresponding to Figs. 5-7 
are analyzed. Fig. 5(a-b) plots the SE of the various HSRO scenarios 
along with the operating cost and security benefit of the HSRO(0.1,0) 
scenario based on SIP changes. According to Fig. 5(a), the SE curve has 
three zones, the first zone is linear (SIP ∈ [0,5]) where the SE increases 
linearly with SIP. The second zone (SIP ∈ (5,35]) is a semi-saturated 
zone where SE has a non-linear relation with SIP. The third zone (SIP 
∈ (35,50]) is a saturated zone, where the value of SE has a constant value 
for different values of SIP. In addition, increasing the level of uncertainty 
over the HSRO(0,0) scenario causes the SE curve shifts downward, 
contrary to the increase of feasibility tolerance which shifts upward. The 
reason for this is that by increasing σ/δ, the discharging capacity of EVs 
will decrease/increase compared to the HSRO(0,0) scenario, while their 
demand for energy will increase/decrease. Hence, the SE which is 
dependent on the charging and discharging power of EVs, according to 
(32a), decreases with increasing σ and increases with increasing δ. Also, 
with increasing σ, SE reaches the saturation point for lower SIP values 
than HSRO(0,0) scenario, but with increasing δ, it will reach the satu-
ration point for higher SIP values. Furthermore, it can be clearly 

Table 3 
The value of different indices in the MG based on the proposed MILP model in 
the HSRO(σ = 0, δ = 0).  

Case I II III IV 

Operational EL (MWh) 1.916 4.353 2.233 1.874 
Max VD/OV (p. 
u.) 

0.087/ 
0 

0.048/ 
0.092 

0.046/ 
0.032 

0.038/ 
0.009  

Reliability EENS (MWh) 42.18 7.24 6.12 3.78  

Security PVB 18 33 33 33 
WSI 19.322 20.752 20.206 21.341 
SE (MWh) – 77.911 67.852 91.788  

Flexibility FE (MWh) – – 29.118 34.26  

Economic Energy cost ($) 1414.7 457.2 512.45 267.4 
Reliability cost 
($) 

4218 724 612 378 

Security 
benefit ($) 

– 779.11 678.52 917.88 

Flexibility 
benefit ($) 

– – 291.18 342.6 

Total cost (Eq. 
1) in $ 

5632.7 402.09 154.75 −615.08 

EL: Energy loss, VD: Voltage deviation, OV: Overvoltage, PVB: Poor voltage bus 
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observed in Fig. 5(b) that as the security benefit is dependent on SIP and 
SE, (1a), it increases linearly when SIP increases even for cases in which 
SE is constant, SIP ∈ (35,50], while the operating cost increases non- 
linearly. 

Fig. 6 also shows the trends of FE in different HSRO scenarios along 
with the operating cost and flexibility benefit in HSRO(0.1,0) based on 
FIP. It is seen that the fluctuations are similar to Fig. 5, it implies that FE 
has the strongest linear growth between 0 and 5 ($/MWh), then, it ex-
periences a gradual nonlinear increase from 5 to 25 ($/MWh), after that, 
it flattens out at just under 40 for HSRO(0,0.1). Now, turning to the 
details increasing the level of uncertainty reduces the FE, and reaches 
the saturation point for lower FIP values than the HSRO(0,0) scenario. It 
is worth noticing that the increase in feasibility tolerance has a reverse 
effect rather than the uncertainty level. As well the amount of flexibility 
benefit in this figure increases when the FIP rising, even for constant FE. 

Finally, regarding the reliability index, based on Fig. 7(a) it can be 
said that with the increase of VOLL penalty price EENS through the 
proposed PMS is sharply decreased. Also, by increasing the feasibility 
tolerance EENS reaches zero for lower VOLL values, in contrast to the 

uncertainty level rising., It is also seen from Fig. 7(b) that increasing 
VOLL reduces reliability cost and subsequently increases operation cost. 
Because with increasing VOLL, all local resources are trying to reduce 
EENS, while the operation cost due to receiving more active power from 
the upstream network. 

C) Evaluation of voltage of critical buses: Fig. 8 shows the daily 
mean voltage curve of critical buses in different HSRO scenarios. The 
given figure illustrates that the voltage variations over 24 h for different 
HSRO scenarios are about 0.002 p.u. or 38 V. It shows that the PMS 
ensures voltage stability of critical buses by transiting between the 
operating modes of FRs. Also, increasing the level of uncertainty in the 
HSRO(0.1,0) scenario compared to the HSRO(0,0) scenario causes the 
mean voltage curve of the critical buses shifts downwards, because if the 
uncertainty level increases, unlike the growth of EVs demand, its dis-
charging capacity decreases. However, increasing feasibility tolerance 
has the opposite effect of increasing the level of uncertainty. 

D) Evaluation of flexible resources performance: In this section, 
the daily active and reactive power curves of FRs such as EVs parking 
and ESs are considered in different HSRO scenarios, which is shown in 

Table 4 
The value of different indices in the MG for Cases III and IV at various HSRO scenarios.  

Case III IV 

HSRO(σ,δ) (0, 0) (0.1, 0) (0, 0.01) (0, 0) (0.1, 0) (0, 0.01)  

Operational EL (MWh) 2.233 2.241 2.231 1.874 1.882 1.870 
Max VD/OV (p.u.) 0.046/0.032 0.049/0.03 0.045/0.032 0.038/0.009 0.040/0.009 0.038/0.009  

Reliability EENS (MWh) 6.12 6.54 6.101 3.78 3.96 3.76  

Security PVB 33 33 33 33 33 33 
WSI 20.206 20.19 20.213 21.341 21.044 21.350 
SE (MWh) 67.852 66.897 67.945 91.788 90.233 91.926  

Flexibility FE (MWh) 29.118 25.485 30.023 34.26 32.24 34.98  

Economic Energy cost ($) 512.45 524.12 506.31 267.4 288.2 264.2 
Reliability cost ($) 612 654 610.1 378 396 376 
Security benefit ($) 678.52 668.97 679.45 917.88 902.33 919.26 
Flexibility benefit ($) 291.18 254.85 300.23 342.6 322.4 349.8 
Total cost (Eq. 1) in $ 154.75 254.3 136.73 −615.08 −540.53 −628.86  

Fig. 5. Impact of SIP on a) security energy in different HSRO scenarios, b) 
economic indices in HSRO(0.1,0). 

Fig. 6. Impact of FIP on a) flexibility energy in different HSRO, b) economic 
indices in HSRO(0.1,0). 
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Figs. 9-10, respectively. According to Fig. 9(a), EVs charging is per-
formed at hours 1:00 to 7:00, which corresponds to low price energy 
hours to meet the needed energy of daily traveling. Also, they are 
recharged between 12:00 and 17:00, which are the average energy price 
hours to inject their stored energy over 18:00 to 22:00, which is inten-
ded as a high energy price period. This process lessens operating cost in 
accordance with the PMS while EVs perform charging and discharging 
operations respectively at off-peak and on-peak hours. The provided 
figure illustrates that the charging and discharging power of EVs will 
increase if the level of uncertainty (σ) increases (HSRO (0.1,0)), because 
the amount of energy consumed by EVs based on (1g)–(8g) increases 
under this condition relative to the HSRO (0,0) scenario. In addition, the 
reactive power curve of the sum of EVs is plotted in Fig. 9(b), it could be 
plainly viewed that when the injection power of RESs based on Fig. 4 is 
high, i.e., 9:00 to 13:00, EVs inject less reactive power into the MG than 
other operating hours. Because the MG overvoltage should be in the 
allowed range and at this time the level of active power injection of the 
RESs is high, so the EVs do not even inject the reactive power into the 
MG between 10:00 and 11:00. In contrast, from hours 1:00 to 8:00, the 
reactive power injection of EVs to compensate the voltage drop caused 
by the high energy demand of FRs charging in these hours is notable. 
Similarly, due to the high power demand of passive loads from the MG, 
the EVs highly inject reactive power to compensate the MG voltage drop 

in the range of 14:00 to 24:00. As a matter of fact, by increasing the level 
of uncertainty, EVs reactive power generation capacity decrease ac-
cording to (1g)–(8g). Thus, the reactive power curve of EVs shifts up-
ward compared to the results of the HSRO(0,0) model, and the rate of 
reactive power injection is reduced, contrary to the increase of feasi-
bility tolerance that shifts downward. 

As shown in Fig. 10(a), ESs to minimize the cost of MG operation 
likewise EVs store the energy received from the upstream network and 
RESs at low and medium energy price hours, i.e., 1:00–17:00 and 

Fig. 7. Impact of VOLL on a) EENS in different HSRO, b) economic indices in 
HSRO(0.1,0). 

Fig. 8. Daily mean voltage curve of total critical buses in different scenarios 
of HSRO. 

Fig. 9. Daily total EVs power curve in different scenarios of HSRO a) active 
power, b) reactive power. 

Fig. 10. Daily total ESs power curve in different scenarios of HSRO a) active 
power, b) reactive power. 
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23:00–24:00, and delivering to the MG at peak time and high energy 
prices, 18:00–22:00. As the uncertainty level increases, the ESs injection 
to support the increased energy demand of EVs rises in HSRO(0.1, 0) 
scenario, while increasing feasibility tolerance, due to the increase in 
solution space in accordance with (1g)–(8g), has the reverse impact. 
Furthermore, comparing Figs. 9(b) and 10(b) explicitly expresses the 
reactive power curves of ESs and EVs have the same trend, inasmuch as 
ESs inject lower reactive power at the period of 9:00 to 15:00 because of 
the notable generation of RESs and avoiding MG overvoltage. In other 
hours, ESs notably inject reactive power to compensate the voltage drop 
caused by the demands of ESs, EVs and passive loads from the upstream 
distribution network. 

In conclusion, the presence of ES apart from demand-side manage-
ment, given the results in this section, addresses the contradiction be-
tween the uncertainties and an increasing need of CL’s power quality. It 
can quickly stabilize the voltage fluctuations and balance supply- 
demand by adaptively controlling the NCL. Also, it provides an 
evident impact on the efficiency of MG by providing auxiliary services 
during the period of network stressful operation. 

Further, the proposed PMS enables MGO to effectively coordinate 
MG components in such a way the MG is enhanced to a highly reliable, 
flexible, and self-healing system. Moreover, optimal and coordinated 
management of FRs provides rapid, real-time, and appropriate actions to 
the uncertainties. Finally, the flexible character that ES brings to the MG 
operation has overcome the financial challenges. 

5. Conclusion 

In this paper, optimal scheduling of MG using ESs and EVs based on a 
flexi-reliable and secure power management strategy as a hybrid sto-
chastic/robust optimization was presented. In the first step, the basic 
and non-linear model of the proposed scheme is formulated with the aim 
of minimizing the sum of the operating and reliability costs, and flexi-
bility and security revenues. The proposed model constrained to the MG 
OPF and the corresponding constraints of flexibility, reliability and 
voltage security. Then, the proposed problem model was converted into 
MILP equivalent model using conventional linearization methods. In 
addition, scenario-based stochastic programming has been used to 
capture the uncertainty of load, market energy price, the maximum RES 
output, and MG equipment availability. Also, to achieve the robust 
capability of EVs in improving the flexibility and reliability of the 
secure-renewable MG, bounded uncertainty-based robust optimization 
was used to model EV’s uncertain parameters. Finally, based on the 
numerical results, it was observed that the proposed MILP model is able 
to achieve a globally optimal point with a low computational time by 
using the CPLEX solver with lower computational error than the original 
model. Also, implementing optimal performance between local MG re-
sources such as RESs, EVs and ESs based on the proposed strategy has led 
to MG even in the worst-case scenario remained stable with high reli-
ability, voltage security and flexibility. Additionally, flexibility and se-
curity benefits in the MG outweigh the operating and reliability costs, 
and MGO has achieved a financial advantage for the MG. These results 
further advocate the valuable role of ES as a potential key component in 
the newly emerging smart grid. In future research, more types of FRs and 
technical flexibility indices, as well as FRs’ storage degradation will be 
investigated to enhance this model to a more efficient and practical 
model. 
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