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a b s t r a c t

With the global energy crisis and environmental issues becoming severe, more attention has been paid to
production scheduling considering energy consumption than ever before. However, in the context of
intelligent manufacturing, most studies apply the industrial internet of things (IIoT) to improve energy
efficiency. It may cause the real-time data in the workshop unable to be collected and treated timely, thus
affecting the real-time decision-making of the scheduling system. Edge computing (EC) can make full use
of embedded computing capabilities of field devices to process real-time data and reduce the response
time of making production decisions. Therefore, in this study, an overall architecture of the EC-IIoT based
distributed and flexible job shop real-time scheduling (DFJS-RS) is proposed to enhance the real-time
decision-making capability of the scheduling system. The DFJS-RS method, which consists of the task
assignment method of the shop floor layer and the RS method of the flexible manufacturing units (FMUs)
layer, is designed and developed. An evolutionary game-based solver method is adopted to obtain the
optimal allocation. Finally, a case study is employed to validate the DFJS-RS method. The results show
that compared with the existing production scheduling method, the DFJS-RS method can improve energy
efficiency by up to 26%. This improvement can further promote cleaner production (CP) and sustainable
societal development.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

At present, energy conservation and emission reduction is an
important issue facing by the industrial enterprise (Yao et al., 2019).
According to the 2019 international energy outlook, energy use in
theworld’s industrial sector grows bymore than 30% between 2018
and 2050, reaching an estimated 315 quadrillion British thermal
units by 2050 (Energy Information Administration, 2019). In China,
industrial enterprises used at least 50% of the country’s electricity
energy and emitted more than 26% of carbon dioxide (Y. Liu et al.,
2014). Therefore, it is extremely urgent to study efficient technol-
ogies and methods of energy conservation and emission reduction
to enhance energy efficiency for achieving cleaner production (CP)
t and Engineering, Link€oping
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and sustainable societal development.
In general, there are twomain aspects of the study on improving

the energy efficiency of the manufacturing enterprise: equipment-
level and production management-level (Huang and Yu, 2017;
Zhang et al., 2020). Since upgrading the equipment requires a lot of
investment, equipment-level energy-efficient approaches may not
be suitable for some small businesses. Thus, more and more
scholars are interested in studying how to use the production
management method, especially production scheduling technol-
ogy, to enhance energy efficiency (Dai et al., 2019a; Plitsos et al.,
2017).

Recently, with the development of Industrial Internet of things
(IIoT), big data and edge computing (EC), more and more
manufacturing enterprises begin to utilise these advanced infor-
mation technologies to realise real-time data-based workshop
management and control (C. Wang et al., 2018; Liu et al., 2020;
Wang and Zhang, 2020; Li et al., 2020). At present, by extending the
EC and IIoT to the production scheduling fields, real-time data in
the manufacturing process becomes more accessible, thus forming
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).



Abbreviations

CP Cleaner production
DFJS Distributed and flexible job shop
DFJS-RS DFJS real-time scheduling
EC Edge computing
EDSM Existing dynamic scheduling method
FJS Flexible job shop
FMU Flexible manufacturing unit
IIoT Industrial Internet of things
JPl Job pool l
JPW Job pool of workshop
LPT Longest processing time
MAR Machine assignment rule
RSJPl RS job pool
SMJ Set of the machined job
SMJl SMJ of Fl
SPT Shortest processing time
TPQ-CM Temporary processing queue of the corresponding

machine
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a big data manufacturing environment (Zhang et al., 2018). Thus,
some scholars try to integrate smart sensors technology, enhanced
data analytics tools, visual monitoring and production scheduling
to realise real-time data-driven energy-efficient production
scheduling (Biel et al., 2018). For example, Kim et al. (2017)
developed a workshop scheduling system based on real-time en-
ergy consumption monitoring for minimising energy consumption.
W. Wang et al. (2018) proposed a real-time optimisation approach
based on real-time energy data for high energy consumption
manufacturing enterprises.

Although these researches have made great progress, there is an
urgent problem that needs to be solved, i.e., how to realise energy-
efficient distributed and flexible job shop (DFJS) scheduling based
on real-time data in big data manufacturing environment. The
specific problems are shown as follows.

(1) How to develop a production scheduling method that con-
siders real-time manufacturing data to realise CP in DFJS?
The traditional DFJS scheduling problem mainly focuses on
production efficiency (i.e. local makespan and global make-
span), and seldom involves other aspects, especially envi-
ronmental problems (Ziaee, 2014). However, with the
increasing prominence of energy deficiency in recent years, it
is worth considering to design a DFJS schedulingmethod that
can satisfy both time and energy objectives. Especially in the
context of intelligent manufacturing, it is necessary to
combine advanced information technologies (i.e. IIoT, big
data and EC) with production scheduling technology to
enhance DFJS production efficiency and realise energy-
efficient production scheduling. Thus, a new DFJS real-time
scheduling (DFJS-RS) paradigm should be developed to
realise CP through the newest information technology.

(2) How to realise real-time assignment of production jobs
based on real-time data in DFJS to enhance production effi-
ciency and energy efficiency at the same time? At present, no
research on dynamic DFJS scheduling problem has been
found after a rigorous literature search. For the dynamic
flexible job shop (FJS) scheduling, the following two dynamic
scheduling strategies are generally adopted: periodic
rescheduling policy and event-driven rescheduling policy
(Pfund and Fowler, 2017; Zhang and Wong, 2017). However,
2

in the face of the frequent occurrence of abnormal events in
the manufacturing process, these existing methods have
apparent defects. In the periodic rescheduling policy, the
dynamic scheduling system cannot timely respond to the
workshop dynamic disturbance. In the event-driven
rescheduling policy, frequent rescheduling may make the
dynamic scheduling system unstable. Moreover, the existing
dynamic scheduling method (EDSM) is a centralised
decision-making model, and the computational complexity
is higher with the increase of scheduling scale. Thus, it is
necessary to propose a new real-time data-driven RSmethod
based on an evolutionary game for DFJS to reduce the
scheduling complexity, improve production efficiency and
realise sustainable production.

To solve the above issues, an evolutionary game-based DFJS-RS
with EC-IIoT method was proposed, which provides a new para-
digm for distributed RS problem. The main contributions of this
study are in the following four aspects.

(1) The EC-IIoT is applied to the DFJS and an overall architecture
of the EC-IIoT based DFJS-RS is proposed. This framework can
effectively deal with the data explosion and shorten the
device response time, thus better solving real-time decision-
making problems.

(2) The RS method is adopted to assign operations to suitable
machines based on real-time data. Compared with the
traditional rescheduling strategy, the RS method does not
generate the scheduling initially, and the real-time assign-
ment of jobs is carried out once each time. Therefore, the
production systemwill be more stable and continuous due to
eliminating the deviation between the new and the original
schedule.

(3) The evolutionary game-based allocation method is used to
allocate the operations in real-time. Compared with the
existing solution algorithm, the proposed method lets a
machine only select one operation each time. Thus, the
complexity of the scheduling problem is stable even when
the numbers of jobs and machines increase.

(4) The evolutionary game equilibrium solution is the optimal
result of the DFJS-RS problem. It can avoid the disadvantages
of the traditional multi-objective optimisation method. For
example, selecting feasible solutions in Pareto optimisation
or determining weight coefficient in weight approach is
challenging.

Therefore, the proposed EC-IIoT based DFJS-RS is not just
another study dealing with general scheduling problems but pro-
vides a novel method for improving the RS efficiency and realising
energy-efficient production scheduling.

The remainder of this study is arranged as follows. Section 2
reviewed the related works on energy-efficient production sched-
uling and real-time production scheduling. Section 3 proposed the
overall architecture of the EC-IIoT based DFJS-RS. Section 4
described the DFJS-RS model. Section 5 proposed an evolutionary
game based solve method for DFJS-RS. Section 6 presented a case
study to demonstrate the effectiveness of the proposed DFJS-RS.
Section 7 summarised the conclusions and future work.

2. Literature review

First, two relevant literature streams, i.e. energy-efficient pro-
duction scheduling and real-time production scheduling, are
reviewed. Then a literature analysis is conducted to summarise the
research gaps.
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2.1. Energy-efficient production scheduling

Since the 1950s, many scholars have started to study various
strategies and methods to deal with the production scheduling
problem (Giglio et al., 2017). Nevertheless, up to the beginning of
the 21st century, the research on energy-efficient production
scheduling problem has not appeared. Energy-efficient production
scheduling, also known as energy-saving scheduling, considers CP
or green manufacturing problem in existing production scheduling
(Ding and Yang, 2013). The first attempts to improve energy effi-
ciency employing a production scheduling method was proposed
by Mouzon et al. (2007). They used an operation method to mini-
mise the energy consumption of the production machine. Subse-
quently, with people’s attention to environmental problems,
energy-efficient production scheduling has gradually become a
hot issue (Jiang et al., 2018). In recent years, there are more and
more researches on the integration of production scheduling and
energy consumption problem, aiming at promoting CP (Gao et al.,
2018; Dai et al., 2019b; Nouiri et al., 2019). At present, the study
on improving the energy efficiency of the production process
through production scheduling is generally carried out in the
following four kinds of workshops: single-machine shop, flow-
shop, job shop and FJS.

For the single-machine shop, C. G. Liu et al. (2014) studied an
operational decision-making problem tominimise completion time
and energy consumption. A solution model to optimise the
completion time and the energy consumption is proposed in a
single-machine system by Yildirim andMouzon (2012). At the same
time, they developed a genetic algorithm to obtain the near-
optimal solution in the multi-objective optimisation problem. For
the flow-shop, a new particle swarm optimisation method was
adopted by Tang et al. (2016), to address the dynamic flexible flow
shop scheduling problem considering the makespan and energy
consumption. Liu et al. (2017) introduced a fuzzy set theory to
optimise tardiness and energy consumption in a flow shop system.
For the job shop, to improving productivity and reduce carbon di-
oxide emissions, May et al. (2015) studied the production sched-
uling strategies in a job shop. Masmoudi et al. (2019) developed an
integer linear programming method to solve job shop scheduling
problem considering energy efficiency. For the FJS, Yin et al. (2017)
presented a novel low-carbon scheduling method considering
productive, energy consumption and noise for the FJS environment.
Gong et al. (2019) proposed an integrated energy and labour
perception multi-objective FJS scheduling approach that considers
makespan, total energy consumption, labour cost and workload.

From the analysis of the above literature review, we can know
that many experts and scholars have studied the energy-efficient
production scheduling problem to improve energy efficiency and
promote CP. However, compared with other types of workshop
energy-efficient production scheduling problems, the research on
energy-efficient FJS scheduling problem has just started in recent
years, and there are still many research topics to be explored. More
importantly, DFJS is an extension of FJS, but the DFJS scheduling
problem considering energy consumption has not been discussed.
DFJS is a very typical type of workshop in a manufacturing shop
floor.With the increasing attention to environmental issues and the
development of greenmanufacturing, it is particularly important to
study energy-efficient DFJS scheduling related to energy
consumption.

Besides, the existing research on real-time energy information-
driven energy-efficient production scheduling is quite limited.
Through a rigorous literature search, only a few papers have been
found to deal with this problem. For example, Ding and Wu (2019)
proposed a multi-objective fuzzy method based energy loss opti-
misation scheduling modelling in the IIoT environment. Tian et al.
3

(2019a) proposed a rescheduling method in the IIoT environment
to solve the energy-efficient production scheduling and real-time
control problem in the FJS. However, these works still did not
involve the energy-efficient DFJS scheduling problem.

2.2. Real-time production scheduling

The first paper on dynamic production scheduling was written
by Holloway and Nelson (1974). To solve the dynamic job shop
scheduling problem, they developed a new heuristic scheduling
method. Then, Muhlemann et al. (1982) proposed a job shop
scheduling framework and studied job shop scheduling in a real
environment. They discussed the periodic rescheduling policy.
Later, Church and Uzsoy (1992) adopted two rescheduling policies
to solve a dynamic workshop scheduling problem in the case of
rush order arrivals. Since then, more and more people have begun
to study the dynamic production scheduling problem (Kundakci
and Kulak, 2016; Shahgholi Zadeh et al., 2019). To realise sustain-
able manufacturing, some scholars have studied how to use RS to
realise CP (W. Wang et al., 2018; Wang et al., 2020; Zhang et al.,
2017a). At present, there are three fundamental approaches to
address the dynamic production scheduling problem in the work-
shop: reactive, proactive and proactive-reactive scheduling
methods (Lou et al., 2012).

For the reactive scheduling method, Tay and Ho (2008) pre-
sented genetic programming based dispatching rules method to
address the multi-objective FJS scheduling problem. Rahmani and
Ramezanian (2016) developed a novel reactive model to solve a
dynamic flexible flow shop scheduling problem considering rush
order into the process as disruptions. For the proactive scheduling
method, Zhang et al. (2016) presented a Pareto-optimal approach to
obtain a robust schedule for an FJS scheduling problemwith flexible
workdays. Nouiri et al. (2017) used a new particle swarm optimi-
sation algorithm to study the FJS scheduling problem. For the
proactive-reactive scheduling method, Gao et al. (2015) studied the
FJS rescheduling problem for new job insertion and proposed four
heuristic algorithms. Zhang and Wong (2017) integrated an ant
colony algorithm and multi-agent system to study the FJS
rescheduling problem under a dynamic environment. However,
because there is no real-time interaction between manufacturing
resources, the accuracy of the rescheduling scheme produced by
the methods in the above literature is easily affected.

Thanks to the advent of advanced information technology, the
applications of IIoT in the workshop provide an opportunity to
reduce the above gap. Through the establishment of an IIoT-
enabled workshop, the status of manufacturing resource and job
progress can be perceived in real-time, true, and accurate. At pre-
sent, some papers have started to use the IIoT technology to realise
RS of the workshop. For example, the authors’ previous paper
proposed some scheduling strategies to realise RS based on real-
time data in an IIoT-enabled FJS (Zhang et al., 2017b; Wang et al.,
2019). Turker et al. (2019) developed a real-time data-based deci-
sion support system to solve the dynamic job shop scheduling
problem using dispatching rules. However, the application of IIoT
technology in the RS can produce a lot of real-time manufacturing
data. How to effectively store and process these real-time data in
the RS process is a problem that needs to be considered.

To cope with the above challenges, this study presented an EC-
IIoT based DFJS-RS to realise energy-efficient DFJS scheduling based
on real-time data by using the evolutionary game.

2.3. Literature analysis

To further clarify the differences between this study and pub-
lished works in a similar area, a brief review of recent literature on
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multi-objective workshop dynamic optimisation problem is con-
ducted. We review the existing research from four aspects: appli-
cation of smart technology, rescheduling strategy, solution
algorithm and multi-objective optimisation method.

(1) A considerable part of the existing research does not involve
smart technologies (Shen and Yao, 2015; Hosseinabadi et al.,
2015; Salido et al., 2017). Although in recent years, more and
more scholars began to adopt various smart technologies to
promote the development of dynamic scheduling, most of
these were only carried out in the context of IoT (Zhang et al.,
2018; W. Wang et al., 2018; Turker et al., 2019; Tian et al.,
2019b). The application of IoT leads to the generation of big
data. How to effectively store and handle big data is a severe
problem.

(2) Majority of the recent research on dynamic scheduling adopt
event-driven rescheduling strategy (Sreekara Reddy et al.,
2018; Z. Wang et al., 2019). For the event-driven reschedul-
ing strategy, dynamic scheduling is performed when the
previous schedule is modified to accommodate the new
manufacturing environment. However, the new schedule
may be completely different from the original one, meaning
that the unprocessed operations in the original schedule
would be processed earlier or later. It has a severe effect on
other production activities planning related to the original
schedule and reduces the stability of the production sched-
uling system.

(3) With the development of various solution algorithms, most
of the research employs intelligent algorithm to solve
scheduling problems (Valledor et al., 2018; Mourtzis and
Vlachou, 2018; Zhang et al., 2019). These intelligent algo-
rithms typically allocate all the unprocessed operations to
the appropriate machines through a centralised allocation
method. However, such a centralised method has high
computational complexity.

(4) Current research dealing with multi-objective optimisation
problems mainly include the Pareto optimisation and the
weighted approach (Fang et al., 2019; Shi et al., 2019).
However, Pareto optimisation requires decision-makers to
choose from a large number of alternative solutions at each
decision point, which is practically infeasible (Feng et al.,
2020; W. Wang et al., 2020; Li and Wen, 2020). For the
weighted approach, the decision-makers may not always be
experienced or knowledgeable enough to define such spe-
cific weights for each objective (Ozturk et al., 2019).

Through the above analysis, it can be seen that there are still
many deficiencies in the current research on multi-objective
workshop dynamic scheduling. Therefore, in our study, an overall
architecture of the EC-IIoT based DFJS-RS is proposed to enhance
the real-time decision-making capability of the scheduling system.

In addition, the comparison results between this study and the
existing literature on workshop multi-objective dynamic sched-
uling are summarised in Table 1. Based on the above analysis, our
proposed method is superior to the existing multi-objective dy-
namic scheduling method in four aspects: application of smart
technology, rescheduling strategy, solution algorithm and multi-
objective optimisation method.

3. The overall architecture of the EC-IIoT based DFJS-RS

The overall architecture of the EC-IIoT based DFJS-RS is shown in
Fig. 1. The purpose is to use EC-IIoT technology to establish a real-
time data acquisition and processing model and realise real-time
manufacturing-information-driven RS in the DFJS.
4

In the RS stage, each edge device obtains the real-time data of
the corresponding machine through the IIoT device and processes
these insignificant data to form real-time manufacturing informa-
tion. The task of the edge device is to monitor and control the target
machine and to transmit real-time manufacturing information
from the machine to the cloud centre. Meanwhile, the cloud centre
automatically obtains the real-time job information, e.g. the cutting
time, setup time and cutting power etc. of each machine and its
request of the operations when it is idle each time. Therefore,
manufacturing resources can regularly interact with each other.
Only one optimal operation is assigned each time to the requested
machine according to their real-time manufacturing information.
When themachine finishes the assigned operation, it automatically
sends its current status and requests the operations until all the
operations are finished. In the proposed method, at any time, each
machine can obtain one optimal operation. The complexity of this
problem is stable with increased operations because only one
optimal operation is selected for one machine each time. Since the
operation allocation is real-time data-driven and the proposed RS
method is only started for the idle machine, the scheduling effi-
ciency can be dramatically improved.

The implementation processes of DFJS-RS include two parts,
namely shop floor layer and FMUs layer. The shop floor layer assigns
all jobs to a suitable FMU and outputs an assignment result for each
FMU. This layer aims to increase productivity and balance all FMUs
workload. The FMUs layer contains some single FMU, which works
simultaneously. In each FMU, the operations from upper-level
assignment results are assigned to a suitable machine based on
the real-time information of manufacturing resources. The aim of
this layer is not only to increase productivity and balance workload
for all machines by FMU itself but also to improve energy efficiency.

The detailed implementation of DFJS-RS consists of two steps:
Step 1: before the RS starts, all manufacturing data of the

workshop can be known by the information management system.
Then, products are divided into several independent jobs according
to their machining characteristics. Next, all unallocated jobs are put
into a job pool of workshop (JPW) and all FMUs request to under-
take the jobs of JPW. By using the evolutionary game, each FMU can
get a job from the JPW at a time. Repeat the above process until all
jobs assigned to the most suitable FMU. Thus, which jobs should be
processed in which FMU is determined.

Step 2: during the RS stage of FMU l, at time t0, the first unal-
located operations of all jobs of FMU l are added into an RS job pool l
(RSJPl). Here, FMU l denotes one of all FMUs. Then, each machine of
FMU l requests an operation of the RSJPl. Next, each machine
continually interacts with operations and other manufacturing
resources. At last, some operations of the RSJPl are allocated to the
corresponding machines based on the real-time status of machines
using the evolutionary game. At each time t of the subsequent RS,
the allocation processes in time t0 are used to assign all operations
to corresponding machines. In this step, the operations assignment
is based on real-time manufacturing information. Thus, when
abnormal events occur (e.g., machine breakdown, worker absen-
teeism), the adverse effects brought by abnormal events can be
quickly removed and eliminated.

Step 3: If a rush order has happened, the new arriving jobs are
assigned to the suitable FMU immediately according to the method
of step 1. Then, the operations of the rush order of FMU l are allo-
cated to the corresponding machines based on the method of step
2.

4. The DFJS-RS model

To implement the task assignment of the shop floor layer and
the RS of the FMUs layer, this section presents the optimisation



Table 1
Summary of the literature on the multi-objective workshop dynamic optimisation problem.

Reference Workshop category Application of smart
technology

Reschedule strategy Solution algorithm Multi-objective optimisation
method

Shen and Yao (2015) Flexible job shop None Event-driven Multi-objective
evolutionary

Pareto optimisation

Hosseinabadi et al.
(2015)

Flexible job shop None Event-driven Local search algorithm Weighted approach

Salido et al. (2017) Job shop None Match-up technique Memetic algorithm Weighted approach
Sreekara Reddy et al.

(2018)
Flexible job shop None Event-driven Teacher learning-based

algorithm
Pareto optimisation

Valledor et al. (2018) Flow shop None Period-driven Knee point method Pareto optimisation
Mourtzis and Vlachou

(2018)
Job shop Cloud-based CPS Depending on the state of

machines
Adaptive scheduling
algorithm

Weighted approach

Zhang et al. (2018) Unknown IoT Event-driven Particle swarm
optimisation

Pareto optimisation

W. Wang et al. (2018) Hybrid flow shop IoT Event-driven NSGA-II Pareto optimisation
Ozturk et al. (2019) Flexible job shop None Priority rules Evolutionary method Weighted approach
Z. Wang et al. (2019) Job shop None Event-driven Particle swarm

optimisation
Weighted approach

Zhang et al. (2019) Flexible job shop RFID Event-driven Mixed quantum algorithm Weighted approach
Fang et al. (2019) Job shop Digital twin Event-driven NSGA-II Pareto optimisation
Turker et al. (2019) Job shop IoT Depending on the state of a

system
Dispatching rules unknown

Tian et al. (2019b) Flexible job shop IoT Period-event-driven Dynamic game Nash equilibrium
Shi et al. (2019) hybrid flow shop IoT Event-driven Indicators-genetic

algorithm
Weighted approach

Feng et al. (2020) Flexible job shop IoT, Edge computing Period-event-driven Improved GDA Pareto optimisation
W. Wang et al. (2020) Unknown CPS, Digital twin Event-driven NSGA-II Pareto optimisation
Li and Wen (2020) Job shop None Event-driven Particle swarm

optimisation
Pareto optimisation

This study Distributed and flexible
job shop

IoT, Edge computing Real-time scheduling Evolutionary game Evolutionary game
equilibrium

Fig. 1. The overall architecture of the EC-IIoT based DFJS-RS.
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objectives of the shop floor layer and FMUs layer, respectively.
4.1. Problem statement

The DFJS-RS problem is shown as follows in this study. The
workshop has n jobs and p FMUs. The job i contains ni operations
and the lth FMU hasml machines. An operation of each job can only
be processed on one machine in one FMU. The primary purpose of
the DFJS-RS is to assign each job to the suitable FMU and determine
the optimal machine for each operation based on real-time
manufacturing information so that the objectives of the shop
floor layer and FMUs layer can be satisfied. Table 2 describes the
Notations used in this study.

During the process of the DFJS-RS, we made the following
assumptions:

(1) All FMUs can process all jobs.
(2) Transport costs between machines are ignored.
(3) At the initial moment, all machines are working properly.
(4) If a job is assigned to an FMU, all operations of this job are

processed on that FMU.
(5) If abnormal events occur, the processing of the operation can

be interrupted.
4.2. Formulation of DFJS-RS

4.2.1. Shop floor layer
In the shop floor layer, all FMUs negotiate to work simulta-

neously and output job assignment results for each FMU at the
beginning of RS. The objective of the shop floor layer is to minimise
the maximum completion time for jobs completed on the FMU as
short as possible. At the same time, the workload balance for each
FMU should be taken into account.

Objectives:

(1) Minimising the maximum completion time of all assigned
jobs (makespan):
Table 2
Notations.

Notations Description

J ¼ fj1; j2;/; jng Set of jobs
ji ¼ fOi1;Oi2;/;Oini

g Operation set of job i
F ¼ fF1;F2;/;Fi;/;Fpg Set of FMUs

Ml ¼ fMl1;Ml2; :::;Mlml g Set of machines of FMU l

Ci Completion time of ji, where
AL The average workload of all
WL The total workload of FMU l
WBI Workload balance index

xlkij 1, if Mlk is used for the Oij; 0

Cijlk Completion time of Oi,j on Ml

WL
M

Critical machine workload o

Wlk Workload of Mlk

Plkidle Idle power of Mlk kW

tlkidle Idle time of Mlk

Plkcutting Cutting power of Mlk kW

tcijlk Cutting time of Oij operated

Plkchanging Tool changing power of Mlk

ttijlk Tool changing time of Oij op

tsijlk Workpiece setup time of Oij

El Production energy consump

Cij Completion time of Oij

6

Minf s1 ¼makespan ¼ maxCi (1)

During the job assignment, each FMU can only obtain one job at
a time. Therefore, in each job assignment, as long as the maximum
completion time of the assigned job on all FMUs is minimised, the
requirements of objective 1 of the shop floor layer can be satisfied.

(2) Minimising the workload balance index (WBI):

Minf s2 ¼WBI ¼
XP

L¼1

jWL �ALj (2)

In Equation (2), since WL represents the total workload of FMU l
and AL represents the average workload of all FMU, |WL-AL| rep-
resents the deviation between the total workload of FMU l and the
average workload. Thus, the workload balance index is defined as
the sum of the absolute values of the deviation between the total
workload of each FMU and the average workload, denoted as WBI,
which should be minimised when assigning jobs.

Subject to:

WL ¼
Xml

k¼1

Xn

i¼1

Xni

j¼1

h
xlkij ,

�
tcijlk þ tsijlk þ ttijlk

�i
(3)

It can be seen from Equation (3) that the total workload of FMU l
is the sum of the cutting time, workpiece setup time and tool
changing time of all operations assigned on all machines within
FMU l, denoted as WL.

Xml

k¼1

xlkij ¼1 (4)

Equation (4) indicates that if an operation Oij is processed on a
machine Mlk, then xlkij ¼ 1; otherwise xlkij ¼ 0.

AL¼

Pp
L¼1

WL

p
(5)
ji is the job that has been assigned to FMUs
FMU

, otherwise

k, where Oi,j is the operation that has been assigned to the machine on the FMU l
n FMU l, which is the machine with the most workload

on Mlk

kW

erated on Mlk

operated on Mlk

tion of FMU l
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It can be seen from Equation (5) that the average workload of all
FMUs is the average of the sum of the total workload of each FMU.

Equation (1) guarantees the minimisation of the maximum
completion time of all assigned jobs. Equation (2) ensures the
balance of workload for each FMU. Equation (3) defines the total
workload of FMU l. Equation (4) is the resource constraint, which
means that an operation can only be allocated to one machine of
one FMU. Equation (5) expresses the average workload of all FMUs.
4.2.2. FMUs layer
In the FMUs layer, each FMUmakes a schedule by FMU itself. The

real-time manufacturing information and the job assignment re-
sults from the shop floor layer are obtained as decision input. To
improve production efficiency, minimising makespanl and the
critical machine workload are taken into account. Besides, to ach-
ieve green manufacturing, production energy efficiency is also
considered. All objectives are related to a single FMU l.

Objectives:

(1) Minimising the maximum completion time of all assigned
operations on the FMU l (makespanl):

Minf f ;l1 ¼makespanl ¼ maxCijlki2½1;n�; j2½1;ni�; lk2½l1; lml�
(6)

During the operation assignment, each machine can only get
one operation at a time. Therefore, in each operation assignment, as
long as themaximum completion time of the assigned operation on
all machines is minimised, the requirements of objective 1 of the
FMUs layer can be satisfied.

(2) Minimising the critical machine workload of FMU l (WL
M),

which is the machine with the most workload:

Minf f ;l2 ¼WL
M ¼maxfWlkglk2½l1; lml� (7)

In Equation (7), since Wlk represents the workload of Mlk, the
maximumvalue ofWlk (k2½1;ml�) on the FMU l is considered as the
critical machine workload, denoted as WL

M .

(3) Minimising the production energy consumption of FMU l,
which can be divided into four types: cutting energy con-
sumption, idle energy consumption, tool changing energy
consumption and workpiece setup consumption, is defined
as:

Minf f ;l3 ¼ El ¼
Xml

k¼1

�
tlkidle , P

lk
idle

�
þ

Xn

i¼1

Xni

j¼1

Xm

k¼1

h

�
�
tcijlk , P

lk
cutting þ ttijlk , P

lk
changing þ tsijlk , P

lk
idle

�
, xlkij

i
(8)

where the first part of Equation (8) is the idle energy consumption
and the second part of Equation (8) is the process energy con-
sumption, such as cutting energy consumption, tool changing en-
ergy consumption and workpiece setup consumption.

Subject to:

Wlk ¼
Xn

i¼1

Xni

j¼1

h
xlkij ,

�
tcijlk þ tsijlk þ ttijlk

�i
(9)

It can be seen from Equation (9) that the workload of Mlk is
defined as the sum of the cutting time, workpiece setup time and
tool changing time of all operations assigned on Mlk, denoted as
Wlk.
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Cij �Ci;j�1 �
�
tcijlk þ tsijlk þ ttijlk

�
,xlkij (10)

Equation (10) indicates that when an operation Oi,j-1 begins to be
processed, the next operation Oi,j cannot be processed before the
completion of the operation Oi,j-1.

Equation (6) ensures that the makespanl is minimised. Equation
(7) denotes that the critical machine workload of FMU l is mini-
mised. Equation (8) represents the minimisation of the production
energy consumption of FMU l. Equation (9) gives the workload of
Mlk. Inequity (10) guarantees the constraints of operation
precedence.

5. Evolutionary game based solve method for DFJS-RS

In this section, an evolutionary game based solve method is
designed and developed to improve workshop productivity and
energy efficiency. Employing an evolutionary game, all tasks can be
assigned to the appropriate machine in real-time.

5.1. Evolutionary game model for DFJS-RS problem

Since the evolutionary game can transform a multi-objective
optimisation problem into solving the game equilibrium problem
and use the dynamic game evolution process to obtain the optimal
solution, in this study, we model the DFJS-RS problem by employ-
ing an evolutionary game. For the evolutionary game, the Nash
equilibrium is considered as the solution, which ensures satisfac-
tory returns for all players.

The evolutionary game can be formulated by G ¼ fP; S;U; z; tg,
where, P represents the set of players, S is the strategy space of
players, U is the payoff of players, z is the interference operator, t is
the maximum number of evolutionary iterations. The detailed in-
troductions are as follows.

C Players P: in this study, the DFJS-RS problem needs to assign
jobs to the suitable FMUs, and the RS within each FMU needs
to be determined. Thus, the evolutionary game is used in
both the shop floor layer and the FMUs layer. Each FMU is
considered as a player at the shop floor layer, and the cor-
responding machines in each FMU are considered as players
at the FMUs layer.

C Strategy S: in the shop floor layer, the strategy of each player
corresponds to the unallocated jobs in the JPW. In the FMUs
layer, the strategy of each player corresponds to the first
unallocated operations of all jobs of corresponding FMU.

C Payoff U: to optimise the objectives at the two layers, the
reciprocal of the objective function in the corresponding
layer is the payoff of the player.

C Interference operator z: it imposes stochastic interference to
the “stable” state, and the interference probability is set to pd
so that the original “stable” state is broken.

C The maximum number of evolutionary iterations t: after
several rounds of the game, the initial strategy combination
reached a “stable” state, which is called the generation of
evolution game. In this study, t ¼ T and the maximum
number of evolutionary iterations is T.
5.2. Evolutionary game based DFJS-RS method

In this section, an evolutionary game based DFJS-RS method is
introduced in detail, which includes two layers: shop floor layer
and FMUs layer. The shop floor layer is used to assign each job to a
suitable FMU considering the makespan and balance of workload.
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The FMUs layer is used to solve a real-time FJS scheduling problem
for each FMU, with the objectives of makespan, critical machine
workload and production energy consumption. The evolutionary
game based DFJS-RS method aims to optimise all jobs that need to
be processed in the workshop based on the real-time status infor-
mation of manufacturing resources. The detailed instructions for
these two layers are shown as follows.
5.2.1. Shop floor layer
The shop floor layer can produce a job assignment result for each

FMU at the beginning of RS in the static shop floor environment and
it also assigns rush order to the suitable FMU during the RS stage.
Fig. 2 describes the procedure of the shop floor layer and the spe-
cific implementation consists of seven steps.

Step 1: The two optimisation objectives are assigned to all FMUs
of the workshop in turn. For example, f s1 is assigned to the FMU 1
and f s2 is assigned to the FMU 2. If an FMU 3 exists, f s1 is assigned to
the FMU 3 again. Each FMU is a player in the evolutionary game.
The reciprocal of the objective function assigned to each player is
the corresponding player’s payoff.

Step 2: Pick out the unallocated jobs from all jobs and put these
jobs into a JPW. These jobs in the JPW called the strategies of
Fig. 2. The procedure o
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evolutionary game. Thus, all FMUs can request processing jobs in
the JPW, and one job can be assigned to one FMU at a time. The
assigned job is added to the set of the machined job (SMJ) of the
corresponding FMU. Besides, during the RS stage, the unallocated
jobs from rush orders can also be placed into the JPW so that all
rush orders are assigned to the suitable FMUs.

Step 3: If an Fl requests processing Ji, the allocation process
within Fl is triggered, which uses the following methods.

(1) Based on the previous job assignment result of Fl, the oper-
ations in the SMJ of Fl (SMJl) can be known. Thus, put the
operations of Ji and the operations in the SMJl into a job pool l
(JPl).

(2) To assign these operations in the JPl to the corresponding
machine, we use a machine assignment rule (MAR) and a
dispatching rule. The MAR allocates each operation to the
machine with the minimum processing time. The dispatch-
ing rule uses the Shortest Processing Time (SPT). The pro-
cessing time is equal to the sum of tool changing time,
cutting time and workpiece setup time.

Therefore, the schedule within each FMU can be obtained by
f shop floor layer.
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using the above method.
Step 4: Based on Step 3 and Eqs. (1) and (2), the payoff of each

player is calculated under various feasible strategy combinations.
To ensure each FMU can choose one corresponding strategy, if the
number of jobs in a strategy set is less than the number of FMUs, the
empty set will be added to the strategy set.

Step 5: Solve the Nash equilibrium by a best-response dynamics
based solver method, which is described in Section 5.3.

Step 6: According to the Nash equilibrium results, each FMU can
obtain one job, which is added to the corresponding SMJ.

Step 7: Repeat the above process until all jobs are assigned to the
SMJ of the corresponding FMU.

In this layer, the output is the assignment result of each FMU.
The result shows which job needs to be processed in which FMU
during the RS stage.
5.2.2. FMUs layer
The FMUs layer is used to select the most suitable operations for

each machine according to their real-time status at each time t
within a given FMU. It could reduce the complexity of the
computation because each machine can only assign at most one
operation at each time t. Fig. 3 shows the procedure of the FMUs
layer within Fl at each time t, and the specific implementation
consists of eight steps.

Step 1: Three optimisation objectives of the FMUs layer are
assigned to all machines of Fl in turn. All machines of Fl correspond
to players of the evolutionary game. Thus, the reciprocal of the
objective function assigned to each player is the corresponding
Fig. 3. The procedur
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player’s payoff. If each machine is unavailable at time t, this step is
terminated, and RS goes to the next time t (t ¼ tþ1).

Step 2: The first unallocated operations of all jobs of the SMJl are
put into the RSJPl. The operations in the RSJPl correspond to stra-
tegies of the evolutionary game. Thus, each machine can request to
process the operations in the RSJPl.

Step 3: Each player can choose the corresponding strategy in the
RSJPl to form different strategy combinations. The payoff of each
player is calculated under different strategy combinations, ac-
cording to Eqs. (6)e(8).

Step 4: Find the Nash equilibrium according to the best-
response dynamics based solver method, which is described in
Section 5.3.

Step 5: Based on the result of the Nash equilibrium, some op-
erations could be allocated to the corresponding machines. How-
ever, to guarantee optimal allocation, only one operation allocated
is determined at a time, which is considered to be a true operation.
Other operations are considered as false operations. The rules for
distinguishing a true operation and a false operation are shown as
follows in Fig. 4. The true operation is added into a temporary
processing queue of the corresponding machine (TPQ-CM) and put
the false operations into the RSJPl.

Step 6: Repeat the above processes until all machines have a
new operation added to their TPQ.

Step 7: Select the operations that can be processed at time t from
the TPQ of each machine based on the real-time manufacturing
information. Then, add these operations to the real-time processing
queue of the corresponding machines.
e of FMUs layer.



Fig. 4. The rules for distinguishing a true operation and a false operation.
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Step 8: At the next t (t ¼ tþ1), repeat the above step until all
assignments are completed.

In this layer, the output is a real-time processing queue for each
machine. When abnormal events occur, the influence of abnormal
events can be timely reduced by corresponding methods and
strategies.

5.3. Evolutionary game solution

For the evolutionary game, Nash equilibrium is a general
concept of its solution. Nash Equilibrium is reached when each
player cannot further improve his payoff by changing his strategy,
meaning that the payoff of each player has reach maximum. By
determining the five elements of the evolutionary game in Section
5.1, the DFJS-RS problem can be transformed into an evolutionary
game problem. In this section, a best-response dynamics based
solution algorithm is proposed to solve the Nash equilibrium of the
evolutionary game.

Definition 1. For G ¼ ½P;S;U�, set S�i ¼ S1 � S2 � /� Sk � /�
Sn;ksi,If BRiðs�iÞ ¼ fs*i 2Si : uiðs*i ;s�iÞ� uiðsðiÞ;s�iÞ;csðiÞ 2SigThen
Bi : S�i/Siis the best-response correspondence for player i.

Thus, the best-response dynamics are defined as follows. Under
a specific strategy combination, if other players keep their strate-
gies unchanged, a strategy that a player chooses to maximise its
payoff is called the best-response of the player in this combination.
Starting from a particular strategy combinations ¼ fsi; s�ig, the
dynamic process by which all players alternately choose their best-
response is called best-response dynamics. If all players adopt the
same strategy combination s* every time after a finite time in the
best-response dynamics, the strategy combination s* is considered
a “stable” state.

To get the Nash equilibrium of the evolutionary game, stochastic
interference is needed to cause the game to deviate from the
original “stable” state. Then, the new “stable” state is achieved by
the sequence best-response dynamics of players. Repeat the above
process so that the maximum number of evolutionary iterations
reaches the set value. The final “stable” state is the Nash equilib-
rium of the evolutionary game.

The interference operator in the evolutionary process is defined
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as follows: for the strategy si of S, if the uniform random number
rand (0, 1) is less than the interference probability pd, a strategy is
randomly selected from the ith player’s strategy set to replace the
current strategy si. Otherwise, it remains unchanged. Thus, the
strategy combination after interference can be obtained through
this way for all strategies of S.

From the above analysis, the best-response dynamics based
solution algorithm is summarised in Fig. 5.

6. Case study

In this section, a DFJS-RS case is described and analysed to verify
the effectiveness and feasibility of the presented DFJS-RS.

6.1. Case scenario

Here, an industrial case from a collaboration company in Xi’an is
used. The company is a typical discrete manufacturer for engine
production. With a two-week investigation at its workshops, it
observed that the manufacturing information could not accurately
and timely reflect the real situation. When the abnormal event
occurred, it further intensified production interference. Therefore,
the company is in great need of scheduling method based on real-
time manufacturing information to realise real-time production
optimisation and management. Since the implementation of the
proposed DFJS-RS into a real-life company is a challenging and
complex task, a proof of concept experiment is designed. For
simplicity of discussion but without losing generality, a hypothet-
ical case scenario is considered that represents the configuration of
a real-life workshop in the company.

This case scenario is a configuration of DFJS containing several
FMUs. To make this case scenario close to a real EC-IIoT-enabled
DFJS, some common manufacturing resources are selected to
establish the case scenario in each FMU. As shown in Fig. 6, a demo
case scenario of an FMU is presented. It is mainly composed of two
parts, namely a manufacturing area with some machines, each
machine can sense and interact with each other; a storage areawith
some shelves, each shelf can store raw materials and finished
products.

To realise the active sensing of real-time data in the production



Fig. 5. Algorithm for evolutionary game solution.

Fig. 6. The case scenario of an FMU.
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process, RFID tags are pasted into some manufacturing resources.
For example, RFID tags are attached to machines so that their real-
time status data can be collected; RFID tags are attached to each
pallet so that real-time material data can be obtained; each worker
has an employee card for providing personal information. Besides,
the edge device is placed next to each machine, and the device
captures real-time data through the IIoT device and pre-processes
these real-time data. Then, real-time manufacturing information
is transmitted to the cloud centre. Finally, the cloud centre can
make a detailed scheduling plan based on real-time manufacturing
information.
11
6.2. Simulation experiment

Based on the above-mentioned case scenario, a simulation
experiment is discussed and studied. The optimisation results are
obtained by running software Matlab 7.0 on a computer with a
frequency of 2.2 GHz CPU and 16 GB RAM.

The original data of the simulation experiment are given by
Chan’s paper (Chan et al., 2006), which is a two-FMUs DFJS
scheduling problem. The form of this data is similar to the form of
data in a real-life company. Both these two FMUs contain the same
number and type of machines. Compared with Chan’s paper, since
our study focuses on the RS problem, job 11 is added to the



Table 4
Idle power and tool changing power of machines.

Machines Idle power [KW] Tool changing power [KW]

Ml1 0.995 1.450
Ml2 1.485 1.672
Ml3 1.910 2.919
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simulation data as a rush order during the production execution
stage. Besides, to lower the production energy consumption of each
FMU, compared with Chan’s paper, the cutting power is presented
and the processing time divided into three parts: tool changing
time, workpiece setup time and cutting time. The detailed data is
shown in Table 3. In Table 3, the numbers (A/B/C/D) of row Oij and
column Mlk mean that if Oij is processed on Mlk, the tool changing
time, workpiece setup time, cutting time and cutting power are ‘A’,
‘B’, ‘C’ and ‘D’ respectively. Table 4 shows the idle power and tool
changing power of machines, which are based on (J. Wang et al.,
2020). Time is measured in hours and power in kW. In this study,
the value of pd and T are 0.3 and 100, respectively.

In this case, the flows of the proposed DFJS-RS include three
steps. They are shown as follows.

At first, all jobs are assigned to the most suitable FMU at the
beginning of RS. Here, FMUs consider both optimisation objectives,
namely themakespan andworkload balance index, to complete the
assignment of jobs based on the steps described in Section 5.2.1.
The result of the assignment determines the most suitable FMU for
each job.

When all jobs are assigned to the suitable FMU, each FMU will
conduct RS according to the real-time manufacturing information
of the corresponding FMU. At each time t of RS in each FMU, the
evolutionary game based RS approach (see Section 5.2.2) is used to
allocate the operation to the optimal machine based on their real-
time status information.

During the manufacturing execution, if an abnormal event oc-
curs, the corresponding FMU can obtain this information timely.
Then, through the method proposed in Section 5, the adverse ef-
fects brought by these abnormal events can be eliminated in time.
6.3. Performance analysis for a static environment

To demonstrate the performance of proposed DFJS-RS, this
method is compared to four existing static scheduling methods,
including genetic algorithmwith dominant gene (GADG) presented
by Chan et al. (2006), improved genetic algorithm (IGA) proposed
by De Giovanni and Pezzella (2010), genetic algorithm (called
GA_CL) proposed by Chang and Liu (2017) and genetic algorithm
(called GA_JS) proposed by Lu et al. (2018). All these existing
Table 3
The instance of DFJS-RS.

Jobs Operations Available machine

Ml1 Ml2 Ml3

J1 O11 0.5/2.5/4/2.3 e 0.3/0.7/3/3.4
O12 1/3/4/2.5 0.2/0.8/2/1.9 e

O13 0.3/0.7/2/2.9 e 0.8/1.2/4/3.7
O14 0.2/0.8/1/3.1 0.6/1.4/2/2.4 e

J2 O21 1.2/1.8/5/2.5 1.6/2.4/8/5.2 e

O22 e 2/4/8/2.4 0.4/0.6/3/4.2
O23 1.1/1.9/4/3.2 0.8/2.2/11/1.9 e

O24 0.8/1.2/6/3.1 e 0.3/1.7/2/3.9
J3 O31 1.1/2.9/6/3.4 0.8/2.2/12/2.7 0.6/1.4/6/4.3

O32 e 0.2/0.8/1/2.4 0.7/1.3/4/4.6
O33 0.2/0.8/1/2.1 e 0.4/1.6/2/3.4
O34 0.3/0.7/5/2.6 0.2/0.8/2/3.4 e

J4 O41 e 1.2/0.8/7/2.5 0.5/1.5/3/4.7
O42 1.7/1.3/3/3.5 e 0.5/0.5/1/4.6
O43 e 0.9/2.1/4/3.1 1.3/1.7/9/3.8
O44 1.4/2.6/5/3.8 1.1/1.9/3/2.2 0.8/1.2/1/3.2

J5 O51 1.3/2.7/6/3.1 e 2.1/2.9/10/4.3
O52 e 1.3/1.7/4/2.9 2.1/3.9/8/3.4
O53 1.3/1.7/2/2.1 1.2/1.8/5/3.2 e

O54 0.5/1.5/2/3.5 1.3/1.7/3/2.5 1.4/1.6/5/5.1
J11 O11,1 1.2/2.8/4/2.4 2.1/2.9/3/3.1 e

O11,2 0.1/0.9/1/3.5 e 0.8/1.2/3/4.3
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scheduling methods are based on the data in Chan et al. (2006) as
simulation data. Thus, for comparison in this study, we also use the
same simulation data given by Chan et al. (2006). The optimisation
objective results of our proposed method cannot be directly
compared with the results of existing scheduling methods. The
corresponding reasons and handling methods are as follows.

(1) For the makespan, since these existing scheduling methods
take the maximum completion time of all jobs on all FMUs as
the scheduling objective, it is different from the maximum
completion time proposed in our study. Thus, we use the

maximum value of f f ;l1 (l ¼ 1, 2) (denote as f f1;max) to compare

with the makespan of existing scheduling methods.
(2) For the critical machine workload, the existing scheduling

methods do not consider to optimise. To compare with our
proposed method, for the GADG proposed by Chan et al.
(2006), we calculate the critical machine workload for each
FMU according to the Gantt chart in their paper. The

maximumvalue of f f ;l2 (l ¼ 1, 2) (denote as f f2;max) is compared

with the maximum value of critical machine workload for all
FMUs in the GADG.

(3) For the production energy consumption, the existing
scheduling methods still do not take into account. For the
GADG proposed by Chan et al. (2006), we calculate the total
production energy consumption of all FMUs based on the

Gantt chart. The sum of f f ;l3 (l ¼ 1, 2) (denote as f f3;total) is

compared with the total production energy consumption of
the GADG.

Since the Gantt chart of the other three methods is not given in
the corresponding literature, the values of critical machine
Jobs Operations Available machine

Ml1 Ml2 Ml3

J6 O61 1.4/1.6/4/2.2 e 0.9/1.1/2/3.5
O62 2.2/2.8/4/3.1 1.1/0.9/1/2.1 e

O63 0.5/0.5/2/2.9 e 1.1/1.9/3/3.6
O64 0.3/0.7/1/2.3 0.7/1.3/2/3.2 2.2/2.8/3/4.4

J7 O71 1.4/1.6/5/3.4 1.3/2.7/8/3.6 e

O72 2.3/3.7/9/3.5 e 1.3/0.7/2/3.3
O73 1.3/1.7/4/2.4 1.1/2.9/10/2.4 e

O74 1.2/2.8/4/3.7 2.2/2.8/11/2.5 0.9/1.1/2/4.9
J8 O81 2.3/2.7/7/2.5 e 1.1/2.9/4/3.5

O82 e 0.3/0.7/1/3.2 1.3/1.7/3/4.9
O83 0.2/0.8/1/2.1 1.3/1.7/7/2.4 0.8/1.2/2/3.1
O84 1.1/1.9/3/4.2 0.3/0.7/2/3.2 e

J9 O91 e 1.2/1.8/10/2.4 1.1/1.9/2/3.2
O92 1.4/1.6/3/3.9 2.2/2.8/3/3.1 0.2/0.8/1/4.2
O93 e 2.1/1.9/3/3.2 2.3/3.7/9/3.9
O94 e 1.2/1.8/3/2.2 1/1/1/3.2

J10 O10,1 1.3/1.7/7/2.5 e 3.5/5.5/9/4.6
O10,2 e 2.1/2.9/2/3.2 2.6/3.4/9/4.3
O10,3 1.4/1.6/2/2.6 1.3/1.7/5/2.4 e

O10,4 1.1/1.9/1/3.2 1.2/1.8/3/2.1 1.3/1.7/5/4.1
J11 O11,3 0.8/1.2/2/2.3 1.2/1.8/3/3.1 e

O11,4 e 0.9/2.1/4/2.4 1.4/1.6/4/3.5



Table 5
Comparison results for each method.

Objectives GADG IGA GA_CL GA_JS DFJS-RS

BE. AV. BE. AV. BE. AV. BE. AV. BE. AV.

f f1;max [hour] 42 43.1 37 38.6 37 37.6 38 38.0 38 38.8

f f2;max [hour] 37 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 36 36.5

f f3;total [kWh] 557.7 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 480.2 510.2
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workload and total production energy consumption cannot be
obtained. Thus, the corresponding optimisation results cannot be
compared. The best (BE.) and average (AV.) of results for each
method after 50 runs are shown in Table 5. The values of critical
machine workload and total production energy consumption
calculated from the Gantt chart are the best results in the GADG.

As shown in Table 5, the best makespan in the DFJS-RS is 38 h.
The maximum value and the minimum value of the best makespan
in the existing scheduling method are 42 h and 37 h, respectively.
Thus, the maximum improvement can be achieved to 9.5% and the
minimum to �2.6%. Although the DFJS-RS method is not always
superior to the existing scheduling methods in terms of the best
makespan, the result of DFJS-RS has the better value of the best
critical machine workload compared with the GADG. For our pro-
posed method, the best critical machine workload is 36 h while in
the GADG it is 37 h. Thus, the improvement can be as much as 2.7%.
Besides, the best total production energy consumption got by the
DFJS-RS is 480.2 kWh, which indicates an improvement of 13.9%
compared to the GADG. Therefore, in general, the scheduling per-
formance of DFJS-RS in this study is superior to the existing
scheduling methods in a static environment.
6.4. Performance analysis considering abnormal events

To further illustrate the performance of the DFJS-RS method
considering dynamic disturbance, we compare the DFJS-RS method
with the EDSM, which includes the heuristic, right-shift resched-
uling, periodic rescheduling and event-driven rescheduling. For the
heuristics, in the machine route decision problem, SPT and random
assignment (RA) are adopted, and in the operation sequencing
problem, SPT and longest processing time (LPT) are adopted. RA
means that each operation can be randomly allocated to a machine.
For the right-shift rescheduling, the DFJS-RS method is used to
generate the initial schedule. For the periodic rescheduling, NSGA-II
(W. Wang et al., 2018) is used as the rescheduling method. The
population size is set as 100, the maximum number of iterations is
set as 600, the mutation probability is set as 0.25, and the crossover
probability is randomly selected as the number between 0 and 1.
The rescheduling interval is set to 5 h. For the event-driven
rescheduling, NSGA-II (W. Wang et al., 2018) is still used as the
rescheduling method. Because the above EDSM cannot assign jobs
to suitable FMU in the DFJS, our proposed DFJS-RS method is used
to assign jobs to suitable FMUs. The EDSM only conducts dynamic
scheduling within the FMU.

Three scenarios for the occurrence of abnormal events are
presented to compare the performances. Scenario 1: M12, M13, M21

and M22 breakdown at time t1 ¼ 3, t2 ¼ 5, t3 ¼ 4 and t4 ¼ 6
respectively during the manufacturing execution stage. The ma-
chine repair time is t5 ¼ 5, t6 ¼ 7, t7 ¼ 6 and t8 ¼ 8, respectively.
Scenario 2: job 11 is added to the FMU 1 as a rush order at time
t9 ¼ 12. Scenario 3: the abnormal events in scenario 1 and scenario
2 are considered simultaneously in scenario 3. The simulation re-
sults of scenario 1, scenario 2 and scenario 3 are given in Table 6,
Table 7 and Table 8, respectively.
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It can be known from Table 6, that the DFJS-RS method is
entirely superior to the EDSM. For example, the value of

f f1;maxobtained by the DFJS-RS method is 40 h. Compared with the

EDSM, the maximum and minimum improvements are 31.0% and

2.4% respectively. The maximum value of f f2;max got by the EDSM is

42 h and the minimum value of f f2;max is 38 h. Therefore, the

maximum improvement can be achieved to 11.9% and the mini-
mum to 2.6% in the DFJS-RS method. Compared with the EDSM, the
DFJS-RS method can still achieve maximum improvement of 24.3%

and a minimum improvement of 0.7% on the value of f f3;total.

The data in Table 7 further illustrate that the DFJS-RS method
provides better solutions than the EDSM. From Table 7, the value of

f f1;max obtained by the DFJS-RS method is 45 h, and the maximum

and minimum values obtained by the EDSM are 64 h and 47 h,
respectively. Compared with the EDSM, the maximum improve-

ment can be achieved to 29.7% and the minimum to 4.3%. For f f2;max,

the value obtained by the DFJS-RSmethod is 44 h, with a maximum
improvement of 12.0% and a minimum improvement of 2.2%

compared with the EDSM. The DFJS-RS method improvesf f3;totalby

26.0% and 1.2%, respectively, for its maximum and minimum values
than the existing one.

It can be known from Table 8, that the results got by the DFJS-RS

method are still better than the EDSM. The values of f f1;max,f
f
2;max

and f f3;total obtained by the DFJS-RS method are 46 h, 44 h and

550.1 kWh respectively. Compared with the EDSM, the maximum

improvement off f1;max,f
f
2;max and f f3;total can be calculated as 29.2%,

15.4% and 22.6% respectively, and the minimum improvement is
2.1%, 4.3% and 1.7% respectively. It can be found from the simulation
results that the RS performance can be significantly improved by
using the proposed EC-IIoT based DFJS-RS method.

To illustrate the efficiency of the proposed method, Table 9 lists
the mean CPU time of all methods at each time t or rescheduling
point. Although the mean CPU time of the SPT þ SPT method is
shorter, it can be seen from Table 6, Tables 7 and 8 that the pro-
posed method can achieve a better scheduling solution. Mean-
while, compared with other existing methods, the proposed
method has better time efficiency. Therefore, the proposed method
is in overall more efficient than the existing methods.

The differences between the EC-IIoT based DFJS-RS method
compared to EDSM mainly lie in the following two aspects. Firstly,
by applying EC and IIoT technology to RS, real-time status infor-
mation of the manufacturing resources such as machine status can
be sensed and captured. Jobs can be assigned to a suitable machine
according to their real-time status. For the EDSM, the assignment of
jobs is only based on the original status of manufacturing resources,
and the real-time status of manufacturing resources is not
considered. Thus, in the process of manufacturing execution, the
EDSM often appears frequent interruption, etc. occur. Secondly, for
EC-IIoT enabled DFJS-RS, operations are allocated to the suitable



Table 6
Results of the comparison between the DFJS-RS method and EDSM (Scenario 1).

Scheduling methods f f1;max [hour] f f2;max [hour] f f3;total [kWh]

SPT þ SPT 44 41 522.6
SPT þ LPT 44 41 568.8
RA þ SPT 58 40 664.1
RA þ LPT 57 40 684.8
Game þ Right-shift rescheduling 41 38 526.5
NSGAII þ Periodic rescheduling 48 42 557.9
NSGAII þ Event-driven rescheduling 43 40 537.4
DFJS-RS 40 37 518.7

Table 7
Results of the comparison between the DFJS-RS method and EDSM (Scenario 2).

Scheduling methods f f1;max [hour] f f2;max [hour] f f3;total [kWh]

SPT þ SPT 47 47 570.7
SPT þ LPT 50 47 592.4
RA þ SPT 64 49 734.9
RA þ LPT 63 49 724.2
Game þ Right-shift rescheduling e e e

NSGAII þ Periodic rescheduling 51 50 638.9
NSGAII þ Event-driven rescheduling 47 45 550.6
DFJS-RS 45 44 543.8

Table 8
Results of the comparison between the DFJS-RS method and EDSM (Scenario 3).

Scheduling methods f f1;max [hour] f f2;max [hour] f f3;total [kWh]

SPT þ SPT 47 47 559.8
SPT þ LPT 50 47 588.4
RA þ SPT 65 49 702.7
RA þ LPT 59 49 699.4
Game þ Right-shift rescheduling e e e

NSGAII þ Periodic rescheduling 55 52 710.4
NSGAII þ Event-driven rescheduling 48 46 568.2
DFJS-RS 46 44 550.1

Table 9
CPU time comparisons of all scheduling methods.

Scheduling methods Mean CPU time (s)

SPT þ SPT 4.312
SPT þ LPT 7.621
RA þ SPT 8.634
RA þ LPT 15.413
NSGAII þ Periodic rescheduling 40.134
NSGAII þ Event-driven rescheduling 42.631
Proposed method 5.312
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machines at every time, which is based on the real-time
manufacturing information. Thus, the impact of abnormal events
can be eliminated in time. For the EDSM, such as periodic
rescheduling, if the rescheduling period is too long, the
manufacturing system is not able to respond to abnormal events in
time. Even if the event-driven rescheduling can respond to
abnormal events in time, frequent rescheduling also affects the
stability of the dynamic scheduling system.

7. Conclusions and future work

In today’s environmentally friendly society, reducing energy
consumption is one of the important social responsibility of
manufacturing enterprises. Thus, more and more enterprises re-
gard energy conservation and emission reduction as one of its
production objectives. However, the integration of advanced
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information technology and CP is still in its infancy. This study
provides a theoretical basis for the application of EC-IIoT in CP.
These theories can help enterprises use the newest information
technology to promote the realisation of energy conservation and
emission reduction. At the same time, these theories also fill the
gap of applying EC-IIoT-driven RS technologies to realise sustain-
able production. Besides, energy-efficient DFJS-RS provides
detailed insights into the implementation of EC-IIoT. Integrating
EC-IIoT with existing production management methods can further
improve product quality, productivity, worker health and safety,
and customer satisfaction, which is beneficial to ethical, sustainable
societal development strategies that aim to improve environ-
mental, economic, and social equity. Therefore, both theoretically
and practically, the research in this study can improve the inte-
gration of EC-IIoT and RS, and further increase production efficiency
and achieve CP.

This study has three main contributions. Firstly, an overall ar-
chitecture of EC-IIoT based DFJS-RS can provide theoretical and
practical insights for the academic and business communities to
realise sustainable production. Secondly, the design of the shop
floor layer and FMUs layer can be used as a technology for energy
efficiency optimisation considering CP. Thirdly, an evolutionary
game optimisation method for DFJS-RS is proposed to improve
energy efficiency and promote sustainable production.

In this study, EC is introduced into the RS, and the real-time
monitoring of machine state is realised with the EC-IIoT
manufacturing environment established. One core benefit of the
proposed method is establishing the architecture of the EC-IIoT
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based DFJS-RS, which enables the big data to be collected and
treated timely and effectively. The machine status can be accessed
easily in real-time from adjacent wireless sensors, and the relevant
scheduling can be obtained synchronously. With the proposed ar-
chitecture, the data filtering and calculation can be conducted
locally, so it can dramatically reduce the amount of data sent to the
cloud, thus reduce the cloud computing load and energy con-
sumption of data processing. Therefore, comparedwith the existing
IoT-based dynamic scheduling framework, this study utilises the
edge cloud synergy to deal with data explosion more effectively,
shorten the device response time, and save time, energy and cost,
even with increased data.

The shortage of case analysis is one of the main limitations of
this study. Since the real-world production process contains lots of
manufacturing resources and production jobs, more case needs to
be done, andmore data need to be analysed to test themethods and
to improve the flexibility and efficiency of the DFJS-RS system.

Future research should combine more advanced information
technology with production management methods to achieve CP.
Besides, this study only uses real-time manufacturing information
to drive DFJS-RS. However, how to realise RS based on prediction
information is a problem that should be future discussed.
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