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Abstract: Municipal solid waste (MSW) in the Accra region of Ghana has created the need for
innovative ways to deal with waste management crises facing the city. The goal of this study is to use
the analytical hierarchy process (AHP) to select an appropriate waste-to-energy (WtE) technology
for Accra. The AHP methodology is used to assess four WtE technologies, namely landfill biogas,
incineration, anaerobic digestion, and aerobic composting. Three main criteria and nine sub-criteria
are identified for pair-wise comparison and assessed by 10 experts. The results show that incineration
is the most preferred technology, followed by anaerobic digestion and aerobic digestion, with
landfilled gas being the least preferred technology. Stakeholders in waste management development
in Ghana can utilize the findings of the study to develop implementation strategies for capacity and
institutional capabilities for both thermochemical and biochemical processes in the country.

Keywords: waste-to-energy; AHP; mega city; Accra; case study

1. Introduction

Globally, about 33% of generated solid waste is not monitored or managed with
broadly accepted techniques but rather is dumped into open areas that cause problems
from both public health and environmental condition perspectives [1,2]. The World Bank
reports that global solid waste generation was approximately 2 billion tonnes in 2017 and
is estimated to be 3.4 billion tonnes by 2050. Considering these large quantities and their
associated problems, cities urgently need to select appropriate methods to manage munici-
pal solid wastes to address these local issues. Properly addressing the disposal of these
wastes contributes to indirect progress concerning global greenhouse gas emission and
transitioning towards global environmental sustainability standards. Efficient management
of municipal solid waste also contributes to the economic development of a city or country.
With multiple WTE technologies available, localities have a challenge when comparing the
technologies for selecting which is more optimal for their circumstances.

Currently, various technologies may be used to recover energy from solid waste, and
each technology has its own capacities, merits, and demerits. Therefore, it is critical to
select appropriate technology or a combination of technologies to manage solid waste.
It is challenging to choose the optimal technology because factors from many directions
weigh on the selection process. A multi-criteria decision-making process (MCDM) can
be helpful to decide the selection of the best technology suitable for solid waste man-
agement based on several usually conflicting criteria [3]. During this selection process,
environmental, economic, and social aspects of energy recovery from municipal solid waste
were considered.
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The aim of this study is to identify and evaluate the available technologies used to
dispose the solid wastes while considering the full complexity of factors weighing on
the selection process. This study focuses on selecting the optimal waste-to-energy (WtE)
technology for Accra, the capital city of Ghana, and its suburbs (Accra region). This
selection of technologies contributes to Ghana’s long-term wishes to get the solution to the
management of solid waste through proper treatment and generating useful energy from
the treated waste. In addition, such technologies support the closure of the carbon chain
through developing the value chain with the production and utilization of waste while
improving (protecting) the soil structure. Moreover, WtE technologies promote hybrid
waste-to-energy plants in Ghana that create new jobs and sustainable solution for the solid
waste disposal and management problems in the country. Furthermore, WtE technologies
would contribute to saving a lot of emissions of environmental harmful gases each year in
Ghana, which ultimately facilitates Ghana’s climate change mitigation strategy.

The conversion of municipal solid waste-to-energy can be achieved with different
technologies, which have different advantages and limitations. The key challenge is to
find a suitable technology, taking into consideration the different criteria that can affect
the selection process. Therefore, the selection of the appropriate WtE technology is a
complex process that requires decision makers to evaluate different criteria and make the
optimal choice for a particular setting. The analytical hierarchy process (AHP) is one the
methods used by decision-makers for the selection process. In order to fulfil the study
objective, an analytical hierarchy process (AHP), a multi-criteria decision-making (MCDM)
method, was used. The AHP method supports to assess four WtE technologies, namely,
landfill biogas, anaerobic digestion, incineration, and aerobic composting, using three main
criteria and nine sub-criteria. Moreover, a pairwise comparison was done by soliciting
10 experts’ opinions.

1.1. Solid Waste Management System: Importance to Environment

Environmental impacts associated with solid waste management can be evaluated
through life-cycle-assessment activities. This assessment process generally reveals the
intrinsic properties of the solid waste management systems from upstream to downstream.
Such analysis also helps to evaluate various waste technologies, with respect to energy
production or consumption and the amount of material recovery. For instance, with respect
to incineration, landfilling sounds good for the environment due to extraction of gas.
However, incineration offers energy recovery with higher efficiency than a landfill. Life-
cycle assessment can offer more detailed evaluation of the environmental related issues,
with respect to solid waste management systems.

Other available solid waste management systems show significant differences, with
respect to the environment. For example, waste treatment through digested biomass tech-
nology may cause a potential toxicity impact on humans [4]. Any form of decomposition
of solid waste causes environmental pollution due to inherent chemical compositions. In
general, few landfills in the world can meet environmental standards that are accepted by
the industrialized countries [5]. One of the major environmental concerns of decomposition
of solid waste is the release of harmful gases that contribute to the greenhouse gas effect
and climate change [6]. Additionally, various liquids released from solid waste, such as
leachate, pose a serious threat to surface and ground water systems [5].

1.2. Sustainable Solid Waste Management System

Solid waste management systems are an important concern in today’s environmen-
tally conscious times. Enhanced attention due to legal restrictions, public awareness of
hygiene and sanitation, and emergence of new technologies have brought many cities
to the discussion table to consider their options for improved management. In order to
protect the environment, it is now a global concern to manage solid waste towards sustain-
ability. A sustainable solid waste management system can be defined as environmentally
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friendly, economically affordable, and socially acceptable for a specific region/country and
its individual circumstances [7].

The level of sustainability varies from country to country that is also based on the
economic situation. It is always recommended to plan for an integrated waste management
approach to create a more sustainable waste management system. In addition, it is essential
to analyse the situation of a solid waste management system and develop necessary
strategic plans to determine and address the responsible factors to improve sustainability.
It is a general practice to reduce material consumption to maintain sustainability. It is
therefore suggested to the introduce 3R initiative, reduce, reuse, and recycle, to a solid
waste management system to manage the material volumes [8].

1.3. Waste Management Technologies

As waste is no more treated as a garbage without value, different technologies are
used to manage it in a sustainable way. All over the world, different technologies are used
to manage waste in a more regulated and efficient way. The WtE technologies are used
today to convert municipal solid waste (MSW) to energy and contribute to the protection
of the environment. WtE plants use MSW as feedstock to produce energy in the form
of heat to produce electricity [9,10]. There are three main WtE technologies based on
their conversion pathways and their end-products: thermochemical, biochemical, and
physicochemical [9,11,12], as seen in the Figure 1. The following sections describe the three
main WtE technologies that are suitable for Ghana, as well as their pros and cons.
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1.3.1. Thermochemical Technologies

Thermochemical Technologies is a process in which the molecular structure of solid
waste feedstock is broken down into smaller molecules at high temperatures to produce
heat, electricity, and other valuable products. These technologies include incineration,
pyrolysis, and gasification [12].

Incineration is a waste treatment technology that consists of the combustion of raw
or unprocessed waste used as a feedstock [13]. Industrial plants used to incinerate waste
are commonly called waste-to-energy plants. After the incineration process, the waste is
converted into ash, flue gas, and heat. The flue gas is cleaned before being released into the
atmosphere. In some cases, the heat is used by heat engines or power plants to produce
electricity. The advantage of incineration over the other WtE technology is that it uses
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almost all types of MWS fraction and can reduce the volume of the waste by 80% and the
solid mass by 70%. However, the initial costs to invest in such a plant is very high and
could eventually lead to air and/or water pollution [14,15].

Pyrolysis is a thermal process that takes place without air at a temperature around
400–1000 ◦C, where the MSW is degenerated to produce gas (syngas), liquid (pyrolysis
oil), or solid fuel (char) [16]. During the pyrolysis process, up to 80% of the carbonaceous
fraction of the feedstock (here, MSW) used is recovered [14]. There are three types of
pyrolysis reactions (slow, fast, and flash pyrolysis) depending on the operating parameters,
such as temperature, heating rate, particle size, and residence time [15]. The proportion of
each of the three fuels produced from the process depends on the type of pyrolysis used,
as seen in the Table 1 [15,17,18]. However, pyrolysis technology has some demerits. Its
capital, operation, and maintenance costs are high and it needs highly qualified profes-
sionals to operate. The adoption of this technology is very rare compared to other MSW
management [14,15]. However, research by Higman and Tam [19] shows that, on a larger
scale, pyrolysis is profitable economically and helps protect the environment by means of
waste minimization and carbon capture.

Table 1. Percentage of each type of fuels for all three pyrolyses below (Source: Author).

Types of Pyrolysis Gas Liquid Solid

Slow pyrolysis 30 35 35
Fast pyrolysis 50 20 30

Flash pyrolysis 75 12 13

Gasification is a thermal process that occurs at a temperature around 1000–1400 ◦C
in an aerobic condition [16]. The main gasification reactors used in this process are rotary
kilns, updraft fixed bed reactors, downdraft fixed bed reactors, bubbling fluidized bed
reactors, entrained flow bed reactors, plasma reactors, vertical shafts, and moving grate
furnaces [20,21]. During this process, the plastics and combustible organic fraction of the
waste are converted into syngas or synthesis gas, such as carbon monoxide (CO), Hydrogen
(H2), carbon dioxide (CO2), water vapor (H2O), nitrogen (N2), and methane (CH4) [21].
At the end of the process, the clean syngas produced is used directly in gas turbines to
produce heat and power [14]. However, gasification releases polluting compounds (alkalis,
halogens, heavy metals, and tar). Some of the gases produced, due to their corrosiveness,
need to be purified before being used [16].

1.3.2. Biochemical Technologies

Biochemical Technologies are processes in which biological agents or micro-organisms
(yeast, for example) are used to convert organic parts of MSW into gas or liquid biofuel. The
WtE technologies that fall under this pathway are anaerobic digestion, aerobic digestion,
and landfilling [14,15].

Anaerobic digestion is a biochemical process in which micro-organisms are used
to decompose the organic fraction of MSW. This reaction takes place in special reactors
at a specific temperature and pH. The organic fraction of MSW is kept in a digester for
5–10 days, where different stages of anaerobic digestion take place. These stages are
hydrolysis, acidogenesis, acetogenesis, and methanogenesis [15,22]. The major end product
of this process is a high energy mixture of biogas (methane and carbon dioxide) and
traces of sulphide and ammonia [23]. Anaerobic digestion technology has low capital and
operating costs, as well as a low amount of greenhouse gas (GHG) emission, as compared
to the thermochemical technologies. It is an efficient way to treat organic MSW. At the end
of the process, a nutrient-rich substance produced by anaerobic digestion (digestate) can
be used to make fertilizer. The drawback of an anaerobic digestion is that it requires a large
area of land for the installation of the digestion plant. The management and maintenance
of the plant is also difficult and expensive [14,15,24].
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Composting is the method that decomposes biodegradable organic matter in a warm,
moist environment by microorganisms in the presence of oxygen under controlled condi-
tions [25]. The main factors that affect the composting process include oxygen, moisture,
temperature, and nutrients. The end product, or compost, is a material rich in organic
matter and nutrients that can be marketed as a soil amendment for agricultural and hor-
ticultural uses [26]. Mittal [27] described that on-site composting requires know-how,
capital investment, sufficient space, and regular maintenance. There are different methods
for aerobic composting, and selection depends on the type of biodegradable feedstock
available and the goal of composting. The three recommended methods for composting
are aerated static piles (windrows with perforated pipe constructed within the pile), bins,
or aerated chambers. Windrows and aerated static piles are mainly used for high volume
composting, while bins or aerated chambers are most typically used for small volume or
home composting [28].

Sanitary landfill, also known as landfill, a tip, dump, rubbish dump, garbage dump, or
dumping ground is a facility where non-hazardous solid waste is buried in order to limit its
impact on the environment, according to local and international regulatory frameworks [29].
According to William and Larson, landfilling is slightly similar to anaerobic digestion. The
technological approach of this method involves siting, design, construction, operation,
and post-closure landfill management. As shown in Figure 1, a landfill is made up of
a complex excavation, cover system, and other systems that interrelate to break down,
compact, and stabilize disposed wastes. Over time, waste placed in a landfill breaks down
due to biological, physical, and chemical processes [29].

Figure 2 shows a range of technical elements in a landfill. Some of them are landfill
cells that are built either by excavation or by construction of cell containment burns. Since
protecting the groundwater is a priority, a well-designed system made up of liners (clay,
plastic, or both) and a leachate collection and management system is used. Landfills emit
gas, which is mainly composed of methane, CO2, and traces of organic compounds. A gas
collection system is used to prevent any gas emission to the atmosphere. The collected gas
is combusted by means of landfill gas flare or used to produce energy [29].
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1.3.3. Physicochemical Technologies

The most popular physicochemical technologies used for WtE are transesterification
and fermentation.

Transesterification is a process in which the fat fraction of food waste, especially used
cooking oils and animal fats, are transformed into biodiesel [30]. During this physico-
chemical process, triglyceride molecules react with alcohol (methanol, for instance) in the
presence of acid or base catalysts to produce biodiesel as the main product and glycerol
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as a by-product [31]. These biodiesels produced can either be used in transportation to
replace petrochemical diesel or to produce electricity [32,33].

Fermentation is a metabolic process that uses microbes to decompose MSW organic
material in an anaerobic condition. This process is suitable for MSW and has a moisture
content of less than 75% [15]. The fermentation process is similar to the anaerobic digestion
process, except for the methanogenesis stage. While the end product for anaerobic digestion
is biogas, for fermentation it is liquid biofuel (ethanol) [15]. The ethanol can be used as a
transportation biofuel in the place of gasoline [34]. Although fermentation processes use
low-value waste and require less energy to operate, they produce high-quality fuel-grade
liquid (ethanol), which is more environmentally friendly compared to gasoline. However,
the fermentation process is slower compared to the anaerobic digestion process. The output
needs to be purified (by distillation and dehydration), which is energy-intensive [15,34].

1.4. Identification of Factors to Select Waste Management Technologies

MSW treatment technologies vary from one country to another. There is no single
technology that is suitable to manage all solid wastes [35]. In any case, it is important to
follow the solid waste management approaches (Figure 3) because they outline the most
environmentally friendly steps to take care of the waste before it is finally disposed of. The
hierarchy stresses the 3Rs in waste management, specifically, reduce, reuse, and recycle.
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Before decision-makers choose the optimal WtE, they need to consider the pros and
cons of each technology. They should also consider the long-term economic impact, the
nature of the waste, and the environmental concerns, as well the socio-cultural implications.
Several studies have been conducted to help identify the best decision models for choosing
sustainable and efficient waste management technologies, such as the cost benefit analysis
model, the life-cycle analysis model (LCA), and the multi-criteria decision analysis (MCDA)
model. Each model uses a different method and therefore has limitations. Some of them
focus mainly on either monetary criterion (the cost benefit analysis model), environmental
criteria and its impact on the whole life of the waste (the LCA), or environmental, economic,
and social criteria (the MCDA) [36].

Other studies have confirmed that the MCDA model offers a subjective approach
to assess sustainability of a waste management model since it effectively combines di-
verse issues, such as the environment, the economy, and society [37]. Among the MCDA
techniques available, the AHP method developed by Saaty [38] is the most popular for
technology assessment and selection in the renewable energy field [39]. Additionally,
Oyoo [40] suggests that waste quality and quantity (WQQ) and social, environmental,
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technological, and economical factors should be included in this complex decision-making
process. The renewable energy and waste management studies, with a focus on Ghana [41],
indicate that the key criteria, such as economic, technical, human skills, and socio-cultural
criteria, are required for the selection of WtE technology.

1.5. Municipal Solid Waste Management System in Ghana

As of 2020, Ghana has 16 regions divided into 260 local metropolitan, municipal,
and district assemblies [42]. Currently, the population of Ghana is about 31.7 million [43].
Irrespective of any social and economic consideration, 0.2–0.8 kg/person/day of waste is
generated by Ghanaians [44]. A study [45] published in 2015 estimated that 13,500 tonnes
of solid waste were generated per day for a population size of 27 million. The same study
gave an overview of the MSW characterization and quantification in Ghana. It showed
the average generation of rate of fraction of household per capita and per day in Ghana,
as seen in Figure 4. Figure 4 also shows that organic waste is the most generated waste
in Ghana.
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The municipal waste department established in 1985, with financial and technical
assistance from the German Agency for Technical Co-operation (GTZ), was solely responsi-
ble for MSW management in Ghana. Although the collaboration with GTZ was helpful,
their exit from the project deteriorated the waste management situation. It also showed
the limit of the public sector in handling MSW. Therefore, the sector was decentralized,
and calls were made for private waste companies to take care of the waste collection and
management [46]. Currently, there are about 13 private WtE companies in Ghana operating
in collection and disposal of waste [47]. Some of these companies provide house-to-house
waste collection services. At the same time, some central containers are placed at a specific
location where households dump their waste. These containers are later transferred to
bigger designated dumping sites or landfills [46]. Studies by Manu [48] revealed that
the methods used to dispose of solid waste in Ghana are still uncontrolled dumping of
refuse, controlled dumping, sanitary landfilling, composting, and incineration. He also
pointed out that uncontrolled landfills are often located at the periphery of an urban centre.
However, in the rural areas and small cities, there are often neither waste collection systems
nor landfills.
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Waste is dumped at several uncontrolled dumping sites, which are sometimes located
within the built-up areas and become a health hazard [48]. This is confirmed by data from
the Ghana Statistical Service (GSS). According to the GSS, the method of disposal of solid
waste in Ghana is done at 47.8% by public dumps, 19.5% is burned by households, 10.8% is
dumped indiscriminately, and only 21.9% is collected by waste collecting companies [49].
Additionally, Addaney and Oppong [50] found that, like other developing countries, Ghana
faces a serious challenge in managing its MSW because of poor infrastructure and lack
of technical know-how. According to their study, despite effort by different governments
to decentralise the waste management system and the adoption of a number of reform
programs and policies, MSW management has been plagued by ineffectiveness. This has
led to a poor waste collection system, such as inadequate storage containers, and disposal
of waste in unauthorized areas in most municipalities in the country.

1.5.1. Available Solid Waste Management Technologies in Ghana

Studies by Ofori [51] showed that, due to the high organic content in the MSW in
Ghana, there is a high opportunity for the WtE industry. In 2016, for instance, the energy
that could have been generated from MSW amounted to 18.5 PJ, which is approximately
17% of the electricity consumption in Ghana [51]. The most used MSW management
technologies in Ghana are composting, recycling, engineered and non-engineered landfills,
and incineration; however, this is without properly capturing emitted biogas or any other
by-products [51]. Among the aforementioned technologies, composting is one of the most
used in Ghana. In a research conducted by Agro Eco Louis Bolk Institute, 16,000 tonnes
of compost (estimated 60,000 tonnes/yr by now) was generated from MSW in 2016 only
in the Greater Accra Metropolitan Area (GAMA). However, the technology, which tends
to convert waste into energy by waste recycling, incineration, and electricity generation,
is not well developed. However, there are a few commissioned or future WtE projects, as
seen in Table 2 below.

Table 2. WtE projects in Ghana.

Project Location Objective Status Source

McDavid Green Solutions
(MDGS) Dawa, Greater Accra Waste to Electricity Planning [52]

Armech Thermal Power
Station Waste-To-Energy Tema, Greater Accra

Waste burned to generate the
electricity from several metropolitan

and municipal assemblies in the
Greater Accra Region. Capacity

60 MW

Planning [53]

Spaans Babcock Waste,
Energy, and
Environment Project

Recycling of approximately
20 tons/day of solid waste, and

incineration about 180 tons/day and
produce 5 MW of electricity

Planning [47]

Ghana/Germany Waste to
Energy Plant

Atwima Nwabiagya in
the Ashanti Region

Construct 400 KW Waste to
Energy Plant Planning [54]

Hybrid Waste to Energy as
a Solution for Ghana

Gyankobaah,
Ashanti region Build a 400-kW waste-to-energy plant Future [54]

Zoomlion waste recycling
plant in each region Each Region Recycling plant in each region Future [55]

Another approach that is commonplace in Ghana is to turn the waste into compost,
such as in the Kumasi Compost and Recycling Plant, which has been commissioned this
year by the president [55]. Additionally, the Renewable Energy Master Plan (REMP) from
the Ministry of Energy of Ghana showed the opportunities for WtE technologies and the
target for years to come in reference to year 2015, as seen in Table 3 [56].
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Table 3. Waste-to-energy potential in Ghana (Source: Author).

Technology/Intervention
Utility Scale Power

Reference
(2015) 2020 2025 2030

MSW + Biogas 0.1 MW 0.1 MW 30.1 MW 50.1 MW
Biofuel 0 100 t 5000 t 20,000 t

1.5.2. Waste Management Situation in Accra

Accra, the capital city of Ghana, has more than 2 million inhabitants and the Greater
Accra region almost 5 million, according to the Ghana Statistical Service [57]. A total of
900,000 metrics tons of municipal solid waste (mainly organic waste at approximately 67%)
is generated by Accra alone in one year [58].

Data from 2017 regarding the type of waste disposal method by type of locality and
region show that 65.5% of waste is properly collected in the greater Accra region against
21.9% for the whole country. The pie chart below (see Figure 5) adapted from a census data
from Ghana Statistical Service indicates that other waste disposal methods are used: waste
burned by households (14.6%), public dumps (17.4%), and waste dumped indiscriminately
(2.7%) [49].
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The rest of the article is organized as follows: Section 2 describes the study methodol-
ogy, while Section 3 highlights the study results. An intrinsic discussion, conclusions, and
limitations are presented in Section 4.

2. Methodology
2.1. Identification and Selection Criteria of Waste Management Technologies

The goal of the study is to identify and evaluate the appropriate decision for WtE
alternatives for Ghana. To our knowledge, no previous study has applied the AHP model
to evaluate WtE options for Ghana. A literature review and discussion with key experts
in waste management in Ghana was conducted to identify and select the criteria and
sub-criteria and alternatives relevant to situation in Ghana [41,59–61]. After the review,
three criteria, nine sub-criteria, and four WtE alternatives were selected for the study.
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2.2. AHP Methodology

The AHP is a mathematical and subjective tool developed by Saaty [38] for analysing
complex problems on different levels. The steps of AHP used in this study consists of four
levels. The first step defines and states the objective of the problem, which is selecting
the appropriate waste-to-energy technology option for Ghana. The second step is to
decompose the objectives into three main criteria, namely environmental, technical, and
socio-economic [59,62,63]. The third step further divides the main criteria into nine sub-
criteria that provide additional details of the criteria (see Table 4). In the final stage, which
is the four levels of the AHP, the alternatives will be evaluated with sub-criteria selected.
In this study, the WtE technology alternatives are incineration, anaerobic digestion, landfill
gas, and aerobic composting (see Table 5). The hierarchy model is presented in Figure 6.

Table 4. Description of the criteria and sub-criteria in the analytical process hierarchy (AHP) model.

Main Criteria Sub-Criteria Description

Environmental

Global warming (GW)

Capability of the selected
technology reduce greenhouse
gas emissions and other
pollutants [64].

Public and occupational
health (POH)

Refers to ability the Selected
WtE technology reduce the
risks on public and workers’
health (e.g., [62])

Pollution potential (PP)

Refers to the selected WtE
technology with least
environmental impacts on
water, soil, and air (e.g.,
[62,65])

Technical

Complexity of WtE
technology (COM)

Refers to the WtE technology
that is advanced technology
and requires high skill level of
labour (e.g., [59,63])

Availability of skills (AS)

The current skills and
knowledge available
maintaining the selected WtE
(e.g., [66])

Grid availability (GA)

Refers to which of the selected
WtE technology that can
easily transmit at lower cost is
considered better (e.g.,
[59,67])

Capital cost (CC)
The selected WtE technology
with the least investment cost
(e.g., [41,59])

Socio-economic Operation and maintenance
cost (OM)

The selected WtE technology
with the least operation and
maintenance costs (e.g.,
[41,63,68])

Job creation (JC)
The ability of selected
technology to create the most
job opportunities (e.g., [41,59])
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Table 5. Summary description of the waste-to-energy alternatives used in Ghana.

Waste to Energy Alternatives Description

Incineration (INC)

Incineration is a thermochemical conversion of
the organic component of MSW into heat and
power. The main output of an incineration
plant is heat and hot flue gas.

Anaerobic digestion (ADP)

Anaerobic is a biochemical conversion of MSW
to energy involving biological
micro-organisms, such as yeast to convert the
organic fraction of the waste into gaseous
or biofuels

Landfill gas (LFG)

A sanitary landfill with a gas plant erected on
the landfill to recover the gas generated as a
result of anaerobic degradation of the organic
fraction to produce heat or electric energy.

Aerobic composting (AER)

Composting is the method decomposing
biodegradable organic matter in a warm, moist
environment by microorganisms in the
presence of oxygen under controlled
conditions [25]. The end product, or compost,
is a material rich in organic matter and
nutrients that can be marketed as a soil
amendment for agricultural and
horticultural uses.
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2.3. Collection of Expert’s Opinions

Ten experts were asked to make pairwise comparisons between criteria and sub-
criteria on a nine-point scale [38] (see Table 6). The AHP is usually employed with a small
sample of experts who have local knowledge about the topic under investigation [69].
Table 7 provides information on the experts that participated in the questionnaire.

Table 6. Pairwise comparison scale for the AHP model (Adapted [38]).

Explanation Numerical Scale

If option A (Criteria 1) and B (Criteria 2) are preferred equally 1
If option A is moderately more preferred than option B 3
If option A is strongly more preferred than option B 5
If option A is very strongly more preferred than option B 7
If option A is extremely more preferred than option B 9
Choose even number for intermediate evaluation 2, 4, 6, 8
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Table 7. List of experts and their professions.

No. Experts Category Profession Number

1 Academics
Professors and researchers with
background in renewable energy and
waste management

3

2 Waste Professional Waste collection and disposal 1

3

Graduate researchers
in bioenergy and
waste management
on Ghana

PhD researchers in bioenergy and waste
management in Ghana 4

4 Energy Regulator Energy developer and specialist in
Ghana energy commission 1

5. Decision Maker Business manager in a waste company
in Ghana 1

2.4. Construction of the AHP Model

A decision matrix to identify priority weights was constructed, consisting of the goal
and sub-criteria, and scores of the experts are aggregated using the geometric mean. The
following steps are followed to determine the normalized priority weights of the main
criteria and sub-criteria: (i) construct a pairwise comparison matrices for all the criteria
and sub-criteria; (ii) aggregate the comparison matrices; (iii) determine the relative weights
of each criteria and sub-criteria using the normalized matrix. After that, the consistency
of the pairwise comparisons are evaluated. The weights of the main and sub-criteria are
estimated using Equation (1).

Aw = λmax.w (1)

where A is the comparison matrix, w represents the normalized eigenvector (priority
vector), and λmax is the maximum eigen vector. The consistency of the matrix is checked
using the consistency ratio (CR) and consistency index. First, the consistency index (CI) is
calculated using Equation (2), where n is the rank of the matrix.

C.I =
(λmax − n)

n − 1
(2)

Considering the randomness in judgement, the consistency ratio is calculated using
Equation (3), where RI is the random index, which denotes the expected value of CI related
to the order of matrices. If the consistency index is less than 0.10, the judgements of the
experts are considered consistent and acceptable.

C.R =
C.I
R.I

(3)

The standard values of RI are shown in Table 8.

Table 8. Random index (RI) values for different matrix sizes.

N 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.40 1.49

After checking the consistency of each comparison matrix, the local weights for the
main criteria and sub-criteria are determined. The global weight of the sub-criteria is
calculated as follows:

Global weight of a sub-criteria = local weight of the sub criteria x global weight of the
corresponding main criteria.
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3. Results

The results of the data collected was analysed using MS Excel. The responses of all
of the 10 experts on the main criteria and sub-criteria were aggregated using geometric
means. The results presented in Table 8 show the comparison matrices and priority vectors
for the main criteria with a consistency ratio less than 0.1, indicating that the comparison
matrices are consistent and the results can be accepted.

The results of pairwise comparison of the main criteria shown in Table 9 and Figure 7
show that environmental criteria (weight = 0.549) ranked the highest, followed by technical
(weight = 0.241) and socioeconomic (weight = 0.241) criteria. These results demonstrate
that the expert panel placed most importance on environmental factors while analysing
the waste-to-energy alternatives in Ghana. These finding are consistent with those of
Qazi et al. [15] and Kurbatov and Abu-Qadis [62], which also indicates that environment
criteria ranked the highest when selecting WtE options.

Table 9. Pairwise comparison matrix for main criteria relative to the main goal.

Criteria Environmental Technical Socioeconomic Priority Consistency
Ratio

Environmental 1.00 2 3 0.549 0.02

Technical 0.5 1.00 1 0.241

Socioeconomic 0.33 1.00 1.00 0.210
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Figure 7. Priorities of the main criteria.

The results of the pairwise comparison of the sub-criteria, with respect to the main
goal, are presented in Table 10.
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Table 10. Analysis of sub-criteria.

Criteria Environmental Technical Socioeconomic Priority

Sub-criteria POH PP GW GA ESA COM CC OM JC
POH 1 2 1 0.411

PP 0.5 1 1 0.261
GW 1 1 1 0.327
GA 1 3 3 0.588
ESA 0.33 1 2 0.251

COM 0.33 0.5 1 0.159
CC 1 3 2 0.538
OM 0.33 1 2 0.297
JC 0.5 0.5 1 0.163

POH = public and occupational health, PP = pollution potential, GW = emission released by WtE plant (greenhouse gas impact), GA = grid
availability, ESA = expertise skills available, COM = complexity of the WtE technology, CC = capital cost, OM = operations and maintenance
cost, JC = job creation.

Under the sub-criteria associated with the environmental factor, public and occu-
pational health (weight = 0.411) is found to be the most important, followed by global
warming (weight = 0.327), while pollution potential received the least priority. These
findings are consistent with those of Kurbatov and Abu-Qdais [15] and Khoshand [70],
which indicates that public and occupational health received the highest preference.

Within the sub-criteria associated with the technical factor, grid availability (weight = 0.588)
is ranked first, followed by expertise skills availability (0.251) and complexity of the
technology (weight = 0.159). Agyekum et al. [66] found that the grid system is one of the
major hindrances in developing renewable energy projects in Ghana.

Capital cost (weight = 0.583) followed by operation and maintenance (weight = 0.297)
are ranked respectively under the sub-criteria of the socio-economic factor. The least
ranked priority is job creation, with a weight of 0.163. The studies of Rahman et al. [71] and
Oryani et al. [72] reported similar findings, indicating that capital cost is a key component
in the evaluation of the socio-economic aspect of implementing waste-to-energy projects.

The next stage in the pairwise comparison considers the assessment of the WtE
alternatives based on the sub-criteria (see Figure 8). The findings show incineration
and anaerobic digestion as the preferred choice of technology that have the least impact
on public health, followed by aerobic digestion. Landfill gas was the least preferred
choice. Considering the technology with the least pollution potential, the suitable choice is
anaerobic digestion, followed by aerobic digestion, with landfill gas as the least preferred
choice. Under the global warming potential, incineration and landfill are observed to be
the WtE technologies with the greatest impact.

Based on the sub-criteria of grid availability (GA) incineration was ranked first with
a weight of 0.50, followed by landfill gas (0.24). The anaerobic digestion was ranked as
the third option, followed by aerobic digestion. The key outputs of incineration plant,
which are usually located in the urban areas, are electricity and heat. In Ghana, the grid
availability is more efficient in urban than in rural areas, making it easier to transmit the
electricity produced by the incineration plant. On the other hand, biochemical technologies,
such as anaerobic digestion, which are suitable for rural areas (e.g., [63]) with inadequate
grid availability, can make energy delivery very challenging.

Under the sub-criteria of expertise skills availability, the landfill gas received the
highest rank, followed by incineration, while anaerobic and aerobic received the least
choices. The finding is similar with that of Kurbatov and Abu-Qdais [62], who reported
that skills availability for landfill gas received the highest rank in Moscow. Incineration
ranked second, which is consistent with the analysis of Farooq et al. [63], who suggest
that the low level of labour skills required for incineration makes it an ideal choice for
developing countries like Ghana. The WtE technology with the preferred least capital
cost was aerobic digestion, followed by landfill gas. Incineration was identified as the
least preferred under criteria related to the capital cost, but incineration ranked the highest
under the criteria with the least operation and maintenance expenses. The cost to operate
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incineration includes the cost of labour and the absence of sorting the waste, which may
explain the reason for the preferred choice. Aerobic digestion was the least preferred choice
under operation and maintenance, making it the most expensive. Aerobic digestion has
high operation and maintenance costs because the separation of organic waste from the
mixed municipal solid is not an effective process in Ghana. The separation process is a
critical aspect of obtaining the inputs for aerobic digestion (e.g., [41,73]). Within the job
creation sub-criteria, aerobic digestion is found to be the most preferred, with a weight of
0.41, followed by incineration (weight = 0.35). The least preferred option is landfilled gas.
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Figure 8. Priority of waste to energy technologies based on the sub-criteria.

In the final step, the global priorities of the WtE alternatives are determined by
combining the local weight of all the criteria, sub-criteria, and the alternatives. The overall
priorities, presented in Figure 9, show that incineration is the best alternative, with a global
weight of 0.32, followed by anaerobic digestion, with a weight of 0.26. The third ranked
choice is aerobic digestion, with landfill gas as the least preferred choice.
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4. Discussion and Conclusions

The conversion of municipal solid waste for energy generation is becoming an im-
portant discussion in the world. Waste generation in Accra is creating a need to explore
the selection of waste-to-energy technologies that are appropriate. The selection of WtE
technologies require the consideration of different factors and stakeholders. The goal of
the study is to use the AHP methodology to select the appropriate technology for the
city of Accra. The main criteria and sub-criteria are selected considering the relevant
factors to Ghana, and four waste-to-energy technologies are ranked. The results show that
incineration is the most preferred WtE technology, followed by anaerobic digestion. The
low complexity and low skills requirements of incineration technology (e.g., [34]) is an
appropriate WtE option for Ghana. Compared to other thermochemical processes, such as
gasification and pyrolysis, the capital cost and operational costs of incineration is lower.
Despite these advantages of incineration plants and abundance of waste, the design of
incineration plants in Accra and other parts of the country is lacking. The institutional
and governance capabilities should be improved to encourage investors to develop and
implement an incineration plant in the country. For example, the development of incin-
eration plants should be located within the strategy of the development plans of the city
of Accra. In addition, the city of Accra should develop suitable waste collection systems
to ensure guaranteed feedstock for developing incineration plants. Both anaerobic and
aerobic digestion are potential options in Accra. The issue of grid availability shows that
both WtE options are ideal for the rural communities where the production of agriculture
waste is dominant. The location of these options near the communities would lessen the
pressure of a grid as they would be closer for transmission of electricity.

The environmental criteria scored the highest in the main criteria, suggesting a need
for transparent laws on pollution prevention and environmental-related assessments of
waste-to-energy projects in Ghana. Increasing the awareness of the health aspects of waste
may increase the cooperation of residents in waste collection and disposal, which is critical
for the development of incineration plants.

The limitation of the study is related to the selection of WtE options. For example,
there are different types of aerobic digestion, and our study considered aerobic digestion in
general. Future studies can consider different methods of aerobic digestion and its objective.
Although socio-economic criterion is the least favoured option of the main criteria, future
sub-criteria, such as tipping fees, which is a critical component in financing WtE processes
in developing countries, such as Ghana, should be evaluated using AHP models.

The selection of WtE technology involves different stakeholders and a complex deci-
sion process. Our study contributes to this process by providing relevant criteria, informa-
tion, and analysis to assist decision-makers in selecting appropriate WtE options for the
city of Accra.
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