
 

 

 

This is a self-archived – parallel published version of this article in the 

publication archive of the University of Vaasa. It might differ from the original. 

An Online Learning Collaborative Method for 

Traffic Forecasting and Routing Optimization 

Author(s): Guo, Zhengang; Zhang, Yingfeng; Lv, Jingxiang; Liu, Yang; Liu, Ying 

Title: An Online Learning Collaborative Method for Traffic Forecasting and Routing Optimization 

Year: 2021 

Version: Accepted version 

Copyright ©2021 IEEE. Personal use of this material is permitted. Permission from 

IEEE must be obtained for all other uses, in any current or future media, 

including reprinting/republishing this material for advertising or 

promotional purposes, creating new collective works, for resale or 

redistribution to servers or lists, or reuse of any copyrighted component of 

this work in other works. 

Please cite the original version: 

 Guo, Z., Zhang, Y., Lv, J., Liu, Y. & Liu, Y. (2021). An Online Learning 

Collaborative Method for Traffic Forecasting and Routing Optimization. 

IEEE Transactions on Intelligent Transportation Systems 22(10), 6634-

6645. https://doi.org/10.1109/TITS.2020.2986158 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1 

  
Abstract—Recent advances in technologies such as the Internet 

of Things (IoT) and Cyber-Physical Systems (CPS) have provided 
promising opportunities to solve problems in urban traffic. With 
the help of IoT technologies, online data from road segments is 
captured by monitoring devices, while real-time data from vehicles 
is collected through preinstalled sensors. Based on these data, a 
CPS model is constructed to depict real-time status and dynamic 
behavior of road segments and vehicles. An online learning data-
driven model is developed to extract prior knowledge and enhance 
collaboration between road segments and vehicles by combining 
short-term traffic forecasting and real-time routing optimization. 
A case study based on Xi’an city is proposed to demonstrate the 
feasibility and efficiency of the proposed method, showing a 
reduction in the travel time with reasonable computation time, 
without much compromising the fuel consumption and travel 
distance. This work potentially strengthens the transparency and 
intelligence of urban traffic. 

Index Terms—Online learning, collaborative optimization, 
traffic forecasting, vehicle optimization, Cyber-Physical Systems. 

NOMENCLATURE 
𝑡𝑡    Time. 
𝑖𝑖,ℎ   Subscript of road nodes. 
𝑗𝑗    Subscript of routes. 
𝑆𝑆    A finite set of road segments. 
(𝑖𝑖,ℎ)  Road segment. 
𝑅𝑅    A finite set of feasible routes. 
𝑟𝑟𝑗𝑗    Feasible route. 
𝐹𝐹𝐹𝐹   Free flow. 
𝑁𝑁𝑁𝑁   Non-saturated traffic. 
𝑆𝑆𝑆𝑆   Saturated traffic. 
𝑇𝑇𝑇𝑇   Traffic congestion. 
𝑇𝑇𝑇𝑇   Traffic volume. 
𝐴𝐴𝐴𝐴𝐴𝐴  Average vehicle speed. 
𝑅𝑅𝑅𝑅   Road occupancy. 
𝑃𝑃𝑃𝑃   Period of time. 
𝐷𝐷𝐷𝐷   Day of the week. 
𝑃𝑃   Probability distribution function. 
𝐿𝐿   Likelihood function. 
𝑇𝑇     Time duration. 
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𝑇𝑇𝑇𝑇𝑟𝑟𝑗𝑗    Total travel distance of route 𝑟𝑟𝑗𝑗. 
𝑇𝑇𝑇𝑇𝑟𝑟𝑗𝑗   Total Travel time of route 𝑟𝑟𝑗𝑗. 
𝐹𝐹𝐹𝐹𝑟𝑟𝑗𝑗     Total Fuel consumption of route 𝑟𝑟𝑗𝑗. 
𝑑𝑑(𝑖𝑖,ℎ)  Travel distance of road segment (𝑖𝑖,ℎ). 
∆𝑡𝑡(𝑖𝑖,ℎ)  Expected time cost of road segment (𝑖𝑖,ℎ). 
𝛼𝛼(𝑖𝑖,ℎ)  Expected fuel consumption rate of road segment (𝑖𝑖,ℎ). 
𝜔𝜔𝑇𝑇𝑇𝑇   Travel distance weighting coefficient. 
𝜔𝜔𝑇𝑇𝑇𝑇   Travel time weighting coefficient. 
𝜔𝜔𝐹𝐹𝐹𝐹   Fuel consumption weighting coefficient. 
𝛽𝛽(𝑖𝑖,ℎ)   Boolean variable, 𝛽𝛽(𝑖𝑖,ℎ)=0, when road traffic events 

occur on road segment (𝑖𝑖,ℎ); otherwise, 𝛽𝛽(𝑖𝑖,ℎ)=1. 

I. INTRODUCTION 
HE worldwide fast-growing car ownership has adverse 

consequences of traffic problems in urban areas, such as 
traffic congestion, vehicle emissions and exhaust, and waste of 
resources. For example, in 2014, traffic congestion caused an 
estimated 6.9 billion hours of travel delay and 3.1 billion 
gallons of extra fuel consumption with a total cost of $160 
billion for urban areas of the United States [1]. These problems 
have contributed to migrating traditional transportation systems 
into next-generation variants. This area of research is referred 
to as intelligent transportation systems (ITS) [2]. In this regard, 
some of the advanced technologies such as the Internet of 
Things (IoT) [3], [4], cloud computing [5], [6], and Cyber-
Physical Systems (CPS) [7], [8] can provide important concepts 
and technologies for this transition. By installing monitor 
devices and sensors on roads and vehicles, vast amounts of 
accurate and timely traffic information can be collected and 
processed, leading to the real-time status models for vehicles. 
This topic area is known as big data [9]. CPSs with integrated 
computational elements and physical processes can be used to 
manage such big data architecturally [10]. An integration 
architecture of vehicular CPS and mobile cloud computing has 
been designed to provide services for drivers to access mobile 
traffic information stored in the cloud [11]. Additionally, a large 
number of IoT-based models have been developed to simulate 
and optimize traffic systems. For example, a novel intelligent 
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traffic administration system based on IoT has been proposed 
to improve road traffic [12]. 

For traffic forecasting and routing problems, there are many 
existing models including linear models [13], [14] and 
nonlinear models [15], [16] for short-term traffic flow 
forecasting. Traffic forecasting supports proactive dynamic 
traffic control to ease traffic congestion and reduce travel time. 
Nevertheless, very little research in the literature combines both 
the forecasting and routing aspects for traffic problems, and at 
the same time showing that the solutions are available and 
effective in real-life environments [17], [18]. Despite the 
significant progress, existing approaches are insufficient to 
address the emerging challenges and problems that arise in 
future urban traffic systems. These challenges are summarized 
as follows. 

(1) How to make effective used of IoT technologies to collect 
and aggregate online and real-time data from road segments and 
vehicles for enhanced transparency and intelligence of urban 
traffic systems? 

(2) How to establish a CPS model with the integration of 
distributed physical entities and computational resources to 
depict real-time status and dynamic behavior of road segments 
and vehicles? 

(3) How to construct an online learning data-driven model to 
extract prior knowledge from historical and online traffic data 
and strengthen collaborative relations between road segments 
and vehicles?  

To solve these problems, an online learning collaborative 
method by combining short-term traffic forecasting and real-
time routing optimization. Fig. 1 illustrates the design principle 
of the proposed method. By leveraging the IoT technologies, 
online traffic data from road segments and real-time data from 
vehicles are perceived by the monitoring devices and on-board 
units in an active manner. For example, online traffic data is 
captured from road segments by roadside monitoring devices 
such as automatic number plate recognition (ANPR) cameras, 
while real-time traffic data is collected from vehicles through 
preinstalled embedded devices which consists of sensors, 
processors, and communication modules. To store and analyze 
these data, a cloud computing platform is constructed, where 
semi-structured and unstructured data is processed by Hadoop 
clusters, while structured data is processed by data warehouses. 
Based on data analysis, an online learning data-driven model is 
developed to extract prior knowledge from the collected data, 
while the online learning mechanism includes model learning 
based on historical data and parameter learning based on online 
data. Besides, a self-adaptive collaborative mechanism is 

designed to combine short-term traffic forecasting and real-time 
routing optimization for traffic diversion and vehicle 
navigation. To evaluate the feasibility and efficiency of the 
proposed method, a case study based on Xi’an city is presented 
while three key performance indicators (KPI) are considered, 
namely the travel distance, travel time, and fuel consumption. 

The remainder of this paper is organized as follows. Section 
II introduces the background and motivation. Section III 
outlines the overall system architecture of the proposed online 
learning collaborative method. Section IV proposes the online 
learning data-driven model and collaborative optimization 
mechanism. Section V demonstrates the proposed method with 
a case study based on Xi’an city. Section VI presents conclusion 
and future directions of this research. 

II. BACKGROUND AND MOTIVATION 
The state of the art of this topic is briefly reviewed, beginning 

with traffic forecasting and routing optimization approaches, 
and then continuing with vehicular networks such as vehicular 
ad-hoc networks (VANET), Internet of Vehicles (IoV), mobile 
cloud computing (MCC) and vehicular cloud computing 
(VCC). Finally, big data analytics tools such as Hadoop, Storm, 
Spark, and their applications in traffic are introduced and 
discussed. The main contributions of each research work are 
highlighted. Besides, research motivation of this research is 
also presented. 

A. Traffic Forecasting and Routing Optimization Approaches 
As an integral part of ITS applications, short-term traffic 

forecasting has received a wide range of research interests since 
the early 1980s [19]. Traffic forecasting models can be 
generally categorized into linear models and nonlinear models. 
For example, autoregressive integrated moving average 
(ARIMA) models are classic linear parametric models 
overwhelmingly used in time series analysis of traffic flow [20]. 
To improve the prediction accuracy, Kalman filters with 
discrete wavelet analysis have been investigated as a means of 
reducing local noise disruptions [21]. Besides, a local linear 
regression model was also used for short-term traffic prediction, 
showing better performance than the k-nearest neighbor and 
kernel smoothing models [22]. While nonlinear models include 
Bayesian network models [23], neural network models [24], 
deep learning models [25], support vector regression models 
[26], and particle swarm optimization models [27]. Apart from 
these models, research efforts have been conducted on hybrid 
models [28]. A hybrid modeling approach was proposed by 
combining artificial neural networks with a statistical approach 
to forecast urban traffic flow [29]. Nevertheless, existing traffic 
forecasting models are insufficient to deal with emerging 
challenges and problems in future urban traffic systems, due to 
limitations of integrating traffic data and vehicular data and 
collaboration between road segments and vehicles. While for 
vehicle routing approaches, geographic information systems 
(GIS) and optimization tools have been integrated with loading 
and distance requirements [30]. In urban areas, most of traffic 
navigation systems assist vehicles in route selection with real-
time traffic information [31]. Besides, the research on time-
dependent routing problems has been surveyed in Ref [32].  

Fig. 1.  Design principle of the online learning collaborative method. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3 

However, these methods are passive or time-delayed strategies 
that cannot meet the need for real-time routing optimization in 
future urban traffic systems. For large-scale road networks with 
thousands or even millions of nodes, the classical Dijkstra's 
algorithm and its improved version A* algorithm are very slow. 
While the PHAST (hardware-accelerated shortest-path trees) 
algorithm is much faster than Dijkstra's algorithm. PHAST uses 
contraction hierarchies (CH) algorithm, which is a hierarchical 
speedup technique. PHAST can be further accelerated with 
multiple cores [33]. Besides, dynamic traffic assignment (DTA) 
models have been widely studied by researchers and 
practitioners [34], [35]. For example, a simulation-based DTA 
model was used to develop demand estimation methods in 
congested networks for lower-level problems [36]. An 
integrated framework for online and real-time advanced 
traveler information systems was also proposed by using DTA 
models [37]. However, most existing DTA models use the mean 
travel times as the route choice criteria but ignore their 
variations [38]. 

B. VANET, IoV, MCC, and VCC 
Modern vehicles are equipped with a variety of sensors and 

communication devices [39]. These vehicles can collect traffic 
information from the environments as well as other vehicles and 
then feed it back to vehicles and traffic systems to assist in safe 
navigation, pollution control, and traffic management [40]. As 
wireless communication is provided among moving vehicles by 
using dedicated short-range communication, VANET allows 
vehicles to share different kinds of information such as safety 
or traffic jam information. However, service costs constrained 
communications for VANET is high due to the high mobility of 
the vehicles [41]. While IoV extends VANET’s structure and 
applications and emphasizes information interaction among 
roadside infrastructures, vehicles, and humans [42]. In addition, 
MCC is another solution that integrates cloud computing into 
mobile environments to enable mobile users and mobile 
application providers to elastically use resources in a pay as you 
go manner [43]. Consequently, VCC is introduced to construct 
a cloud by using the collection of vehicles’ computing resources 
and extending the capability of interactions amongst vehicles 
[44]. However, VCC is a local optimization method and causes 
a heavy load on the local Internet. Moreover, mobile devices 
are constrained by computing power, memory capacity and 
battery lifetime [45]. 

C. Hadoop, Storm, Spark, and Their Applications in Traffic 
Current data processing tools on a single personal computer 

(PC) cannot meet the requirements of big data analytics. These 
tools are insufficient to capture, transfer, visualize, store, and 
analyze a huge number of real-time and multi-source data [46]. 
Several software frameworks have been used to develop big 
data applications, including Hadoop, Storm, and Spark. Hadoop 
is an open-source distributed computing platform for batch 
processing of large-scale data on commodity hardware. Hadoop 
and Hadoop Distributed File System (HDFS) by Apache have 
been extensively adopted in memorizing and controlling big 
data, while MapReduce is extensively applied for productivity 
exploration of big data [47]. In urban traffic systems, Hadoop 

has been used to solve data-intensive problems, such as the 
processing of massive floating car data for traffic surveillance 
[48]. The storm is focused on real-time stream data processing 
for a broad variety of applications. For example, the Storm has 
achieved efficient data access and data cleaning of streaming 
mass spatial-temporal vehicle data [49]. Besides, a distributed 
stream processing model has been proposed with improved 
predictability by extending Storm [50]. To deal with computing 
workloads, many types of programming models have been 
developed to address the challenges. For instance, MapReduce 
can be used for batch processing, while Spark is designed for 
distributed data processing [51]. The programming model of 
Spark is similar to MapReduce but with an extension of resilient 
distributed datasets [52]. Hence, Spark can capture a wide range 
of processing workloads, including streaming, batch, and 
interactive workloads. For mobile big data analytics, Spark has 
been used to construct a scalable learning framework [53]. Also, 
data integration and sharing between heterogeneous traffic 
monitoring systems and vehicles are insufficient for current 
traffic applications, since many traffic monitoring systems are 
separate and independent for security purposes and the 
collected data is thus scattered among different systems. To 
develop applications that interact with open systems, real-time 
Java-centric architecture has been introduced as a homogeneous 
programming platform for industrial systems [54]. Therefore, a 
framework of traffic data integration and interaction is essential 
and needs to be further investigated, which helps in integrating 
traffic data and sharing data between traffic monitoring systems 
and vehicles. 

Based on the above discussion, the motivation for this 
research is to address the collaborative problems of urban traffic 
systems and vehicles by combing short-term traffic forecasting 
and real-time routing optimization. For future traffic systems, 
online traffic data from road segments and real-time data from 
vehicles can be collected by monitoring devices and sensors in 
an active manner in an IoT-based environment. While a CPS 
model is constructed to integrate distributed physical resources 
and computational capabilities. In cyber space, real-time status 
and dynamic behavior of road segments and vehicles are 
depicted using the collected data. An online learning data-
driven model including model learning and parameter learning 
is established by extracting prior knowledge from historical and 
online traffic data. A collaborative optimization mechanism is 
investigated and designed to enhance the collaboration of road 
segments and vehicles by combining short-term traffic 
forecasting and real-time routing optimization. To demonstrate 
the feasibility and efficiency of the proposed method, a case 
study based on Xi’an city is presented with the consideration of 
the travel distance, travel time, and fuel consumption. 

III. OVERALL ARCHITECTURE OF THE PROPOSED METHOD 
To make effective use of advanced technologies such as IoT 

and CPS, a three-layer system architecture of online learning 
collaborative optimization is designed as the theoretical basis 
and practical guide for potential applications in the future urban 
traffic. Specifically, the proposed architecture consists of the 
physical world, cyber space, and system layer. The plan-do-
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check-act (PDCA) cycle is used as the design cycle principle, 
which includes four steps, namely modeling, implementation, 
feedback, and improvement.  

A. Physical world 
The physical world consists of road segments, vehicles, and 

data centers. Physical infrastructure resources of urban traffic 
systems include road segments and roadside monitoring devices 
such as ANPR cameras, sensors, radio frequency identification 
(RFID) devices, and inductive-loop or microwave detectors. 
For vehicles, many assistant functional modules and on-board 
units are preinstalled such as the Global Positioning System 
(GPS) module, Geographic Information System (GIS) module, 
and other embedded devices. In addition, data centers including 
servers, processors, disks, and databases provide data services 
for data storage, processing, and analysis. However, most of the 
management and control systems for these physical resources 
are distributed and separate. To integrate these physical entities, 
a cloud computing platform is established by cloud computing, 
which can encapsulate capabilities of physical resources into 
cloud services and form an infrastructure cloud pool to provide 
these services in a plug-and-play manner. Fig. 3 illustrates the 
active perception of road segments and vehicles in an IoT-based 
environment. With the help of IoT technologies, online traffic 
data of road segments and real-time data of vehicles are actively 
collected by monitoring devices, preinstalled embedded 
devices, and sensors, which are transmitted through the 
communication networks such as Wi-Fi, Bluetooth, satellite 
networks, IEEE 802.11p, the fourth-generation (4G) and fifth-
generation (5G) mobile communication networks. In Fig. 3, 
yellow dash lines denote the communication between vehicles. 

Red dash lines denote real-time status information transmission 
from vehicles to the cloud computing platform, while green 
dash lines denote decision-making information transmission 
from the cloud computing platform to vehicles.  

B. Cyber space 
The main function of the cyber space is to process and further 

analyze multi-source, multi-dimensional, and heterogeneous 
data. Semi-structured/unstructured data is stored and processed 
by Hadoop clusters, while structured data is managed by data 
warehouses. In data-intensive distributed applications, Hadoop 
is used to handle sensory and less structured data. Hadoop is an 
open-source distributed architecture system that can be used for 
structured and unstructured data search, data analysis, and data 
mining. It consists of two core parts, namely MapReduce and 
HDFS. MapReduce is a distributed and parallel framework 
proposed by Google and can be used to process large-scale data, 
which distributes data and parallelizes the computation across a 
cluster of computers. HDFS is used to store the input data for 
Map tasks and output data of the Reduce tasks. For structured 
data, it is stored as data cubes in data warehouses, where online 
analytical processing (OLAP) tools such as drill-up, drill-down, 
slice, dice, and pivot can be used to deal with multi-dimensional 
data. Fig. 4 illustrates a star schema of the multi-dimensional 
data model in data warehouses, which consists of a fact table 
and six-dimension tables. In the fact table, each tuple includes 
a pointer to each dimension, while the columns in each 
dimension table correspond to attributes of the dimension. 
While for cloud computing, a cloud computing platform is 
constructed to manage cloud resources and provide on-demand 
cloud services in a distributed environment. Specifically, three 
types of cloud services are provided with differentiated access 
permissions, namely public, private, and hybrid clouds. 

C. System layer 
The system layer includes a CPS model of road segments and 

vehicles as well as an online learning data-driven collaborative 
model of short-term traffic forecasting and real-time routing 
optimization. By integrating the physical infrastructures and 
computational resources, a CPS model is established to depict 
real-time status and dynamic behavior of road segments and 
vehicles. The main objective is to enable road segments and 
vehicles to be ‘smart’ for active perception, active response, and 
autonomous decision-making based on their real-time status 
and actively adjusting their behavior. With the help of the CPS 
model, an online learning data-driven model including model 
learning and parameter learning is developed to extract prior 

Fig. 2.  Architecture of online learning collaborative optimization. 

Fig. 3.  Active perception of road segments and vehicles in IoT-based setting. 

Fig. 4.  A star schema of multi-dimensional data model in data warehouses. 
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knowledge from historical and online data for short-term traffic 
forecasting and real-time routing optimization. At first, the 
online learning data-driven model of each road segment for 
traffic status forecasting is developed by extracting knowledge 
from the collected online traffic data and historical traffic data, 
such as traffic volume, road occupancy, and average vehicle 
speed. The models and parameters are updated based on the 
extracted knowledge. A machine learning library including a 
broad variety of machine learning algorithms is constructed to 
support data preprocessing, data analytics, short-term traffic 
forecasting, and real-time routing optimization. Then, the 
collaboration relationship between road segments and vehicles 
is realized by combining short-term traffic forecasting and real-
time routing optimization. According to the real-time status 
information of vehicles including current location, destination, 
and speed, a finite set of feasible routes is initialized. Finally, 
the optimal route is generated considering three KPIs, namely 
travel distance, travel time, and fuel consumption, while the 
result is transmitted to the cloud client on the vehicle side such 
as thin clients, mobile apps, and web browsers. 

IV. ONLINE LEARNING DATA-DRIVEN MODEL AND 
COLLABORATIVE OPTIMIZATION MECHANISM 

To integrate multi-source traffic data and vehicular data from 
separate and independent management subsystems, an online 
learning data-driven model is thus constructed to extract prior 
knowledge from online traffic data and real-time vehicular data. 
Specifically, two parts are considered, namely model learning 
and parameter learning. Besides, to enhance the collaboration 
relations between road segments and vehicles, a self-adaptive 
collaboration mechanism is proposed by combing short-term 
traffic forecasting and real-time routing optimization. 

A. Model learning 
The main objective of model learning to select proper traffic 

characteristics from a range of features and develop a short-
term traffic forecasting model for each road segment from a 
library of traffic forecasting models. Generally, four types of 
traffic status are considered, namely free flow, non-saturated 
traffic, saturated traffic, and traffic congestion, while the 
characteristics of traffic data include the period of time, day of 
the week, percent time-spent-following, average vehicle speed, 
average headway, time occupancy, road occupancy, and traffic 
volume.  

To sort out traffic characteristics with strong correlations to 
traffic status, backward elimination and schemata search are 
implemented to assess these potential variables and generate a 
finite subset of characteristics. The backward elimination 
begins with the complete set and successively eliminates one 
characteristic at a time [55]. At each stage, the possibility of 
deleting a characteristic is considered. The significance level is 
set at 0.15, which determines the inclusion and exclusion of 
characteristics from the subset. Schemata search is a method for 
quickly finding the subset of relevant characteristics, which 
aims to reduce the computation time of backward elimination 
especially if many characteristics are irrelevant. Consequently, 
traffic volume, average vehicle speed, road occupancy, the 
period of time, and day of the week are selected as the top five 

characteristics. 
Mathematically, the road network is defined as a graph 𝐺𝐺 =

(𝑁𝑁, 𝑆𝑆) with a finite nonempty set 𝑁𝑁 of road nodes and a set 𝑆𝑆 of 
edges representing road segments between nodes. Consider a 
road network with a finite non empty set of road nodes 𝑁𝑁 =
{1,2, … , 𝑖𝑖, … ,ℎ, …𝑛𝑛}  and a finite set of road segments 𝑆𝑆 =
{(1,𝑎𝑎), … , (𝑖𝑖,ℎ), … , (𝑛𝑛, 𝑐𝑐)}. Note that (𝑖𝑖,ℎ)  denotes the road 
segment from road node 𝑖𝑖 to node ℎ. For a finite set of feasible 
routes 𝑅𝑅 = {𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑚𝑚}, each route 𝑟𝑟𝑗𝑗 of 𝑅𝑅 consists of a set of 
road segments from  𝑆𝑆 , namely 𝑆𝑆𝑟𝑟𝑗𝑗 . Thus, the matrix  𝑇𝑇𝑇𝑇 
encapsulates multi-source and multi-dimensional traffic data, 
which can be used to formulate the online traffic status of road 
segments by an information model as follows.  

𝑇𝑇𝑇𝑇 =

⎣
⎢
⎢
⎡
𝑇𝑇𝑇𝑇(1,𝑎𝑎) 𝐴𝐴𝐴𝐴𝐴𝐴(1,𝑎𝑎) 𝑅𝑅𝑅𝑅(1,𝑎𝑎) 𝑃𝑃𝑃𝑃(1,𝑎𝑎) 𝐷𝐷𝐷𝐷(1,𝑎𝑎)
𝑇𝑇𝑇𝑇(2,𝑏𝑏) 𝐴𝐴𝐴𝐴𝐴𝐴(2,𝑏𝑏) 𝑅𝑅𝑅𝑅(2,𝑏𝑏) 𝑃𝑃𝑃𝑃(2,𝑏𝑏) 𝐷𝐷𝐷𝐷(2,𝑏𝑏)

… … … … …
𝑇𝑇𝑇𝑇(𝑛𝑛,𝑐𝑐) 𝐴𝐴𝐴𝐴𝐴𝐴(𝑛𝑛,𝑐𝑐) 𝑅𝑅𝑅𝑅(𝑛𝑛,𝑐𝑐) 𝑃𝑃𝑃𝑃(𝑛𝑛,𝑐𝑐) 𝐷𝐷𝐷𝐷(𝑛𝑛,𝑐𝑐)⎦

⎥
⎥
⎤
      

(1) 
where 𝑇𝑇𝑇𝑇 denotes traffic information of road networks. 𝑇𝑇𝑇𝑇(𝑖𝑖,ℎ) 
denotes traffic volume of road segment (𝑖𝑖,ℎ). 𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,ℎ) denotes 
average vehicle speed of road segment (𝑖𝑖,ℎ). 𝑅𝑅𝑅𝑅(𝑖𝑖,ℎ) denotes 
road occupancy of road segment (𝑖𝑖,ℎ) . 𝑃𝑃𝑃𝑃(𝑖𝑖,ℎ)  denotes the 
period of time of road segment (𝑖𝑖,ℎ). 𝐷𝐷𝐷𝐷(𝑖𝑖,ℎ) denotes day of 
the week of road segment (𝑖𝑖,ℎ).  

While Bayesian networks have proven to be a very powerful 
method for dealing with uncertainty and complexity, which can 
be formulated as a directed acyclic graph model that represents 
conditional independencies between a large set of variables [56]. 
Besides, the scale of the traffic forecasting model is adjusted by 
increasing or cutting down the number of vertices in Bayesian 
networks. Fig. 5 illustrates the network structure of Bayesian 
networks for model learning of each road segment, which 
consists of six vertices, namely traffic status, traffic volume, 
average vehicle speed, road occupancy, the period of time, and 
day of the week. A probability table of each vertex defines the 
traffic characteristics probability distribution. For example, the 
traffic status (TS) node consists of four status types, namely free 
flow, non-saturated traffic, saturated traffic, and traffic 
congestion. The criteria are calculated using cluster analysis 
and k-means algorithms from historical traffic data. The sum of 
probability values for each vertex is 1.  

For numerical characteristics, such as traffic volume, average 
vehicle speed, and road occupancy, these characteristics satisfy 
the Gaussian distribution, the probability density function is 

Fig. 5.  Network structure of Bayesian networks for model learning. 
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formulated as follows. 

𝑃𝑃(𝑖𝑖,ℎ)(𝑥𝑥) = 1
√2𝜋𝜋𝜎𝜎

∙ 𝑒𝑒
−(𝑥𝑥−𝜇𝜇)2

2𝜎𝜎2                                                     (2) 
where 𝑃𝑃(𝑖𝑖,ℎ)  denotes the traffic status probability function of 
road segment (𝑖𝑖,ℎ) , 𝑥𝑥 ∈ {𝑇𝑇𝑇𝑇,𝐴𝐴𝐴𝐴𝐴𝐴,𝑅𝑅𝑅𝑅}. 𝜇𝜇  denotes the mean 
value and 𝜎𝜎 denotes the standard deviation.  

Otherwise, the characteristics such as the period of time and 
day of the week are transformed into nominal characteristics 
using entropy-based discretization. For nominal characteristics, 
traffic status probability of different nominal characteristics for 
road segment (𝑖𝑖,ℎ) is formulated using Bayes’ rule as follows. 
𝑃𝑃(𝑖𝑖,ℎ)(𝐴𝐴|𝐵𝐵) =

𝑃𝑃(𝑖𝑖,ℎ)(𝐴𝐴)∙𝑃𝑃(𝑖𝑖,ℎ)(𝐵𝐵|𝐴𝐴)

𝑃𝑃(𝑖𝑖,ℎ)(𝐵𝐵)
                                            (3) 

𝑃𝑃(𝑖𝑖,ℎ)(𝐵𝐵) = ∑ 𝑃𝑃(𝑖𝑖,ℎ)(𝐵𝐵|𝐴𝐴)𝐴𝐴 ∙ 𝑃𝑃(𝑖𝑖,ℎ)(𝐴𝐴)                                 (4) 

𝑃𝑃(𝑖𝑖,ℎ)(𝐵𝐵|𝐴𝐴) =
𝑇𝑇(𝑖𝑖,ℎ)(𝐵𝐵|𝐴𝐴)

𝑇𝑇(𝑖𝑖,ℎ)(𝐴𝐴)
                                                       (5) 

where 𝑃𝑃(𝑖𝑖,ℎ)  denotes the traffic status probability function of 
road segment (𝑖𝑖,ℎ), 𝐴𝐴 ∈ {𝑃𝑃𝑃𝑃,𝐷𝐷𝐷𝐷}, and 𝐵𝐵 ∈ {𝐹𝐹𝐹𝐹,𝑁𝑁𝑁𝑁, 𝑆𝑆𝑆𝑆,𝑇𝑇𝑇𝑇}. 
𝑇𝑇(𝑖𝑖,ℎ)  denotes the time duration of traffic status on the road 
segment (𝑖𝑖,ℎ).  

The likelihood function of traffic status probability for road 
segment (𝑖𝑖,ℎ)  and its standardization are formulated as 
follows. 
𝐿𝐿(𝑖𝑖,ℎ)(𝑦𝑦) = ∏ 𝑃𝑃(𝑖𝑖,ℎ)(𝑥𝑥𝑘𝑘|𝑦𝑦)5

𝑘𝑘=1                                              (6) 

𝑃𝑃(𝑖𝑖,ℎ)(𝑦𝑦) =
𝐿𝐿(𝑖𝑖,ℎ)(𝑦𝑦)

∑ 𝐿𝐿(𝑖𝑖,ℎ)(𝑦𝑦𝑘𝑘)4
𝑘𝑘=1

                                                 (7) 

where 𝐿𝐿(𝑖𝑖,ℎ)  denotes the likelihood estimation function and 
𝑃𝑃(𝑖𝑖,ℎ)  denotes the normalized probability function of traffic 
status for road segment (𝑖𝑖,ℎ). 𝑥𝑥𝑘𝑘 denotes the 𝑘𝑘th element of x, 
𝑥𝑥 ∈ {𝑇𝑇𝑇𝑇,𝐴𝐴𝐴𝐴𝐴𝐴,𝑅𝑅𝑅𝑅,𝑃𝑃𝑃𝑃,𝐷𝐷𝐷𝐷}. 𝑦𝑦𝑘𝑘 denotes the 𝑘𝑘th element of 𝑦𝑦, 
𝑦𝑦 ∈ {𝐹𝐹𝐹𝐹,𝑁𝑁𝑁𝑁, 𝑆𝑆𝑆𝑆,𝑇𝑇𝑇𝑇}. 

B. Parameter learning 
Parameter learning is another core part of the online learning 

data-driven model, which can quantify and adjust the mapping 
parameters between traffic characteristics input vector of each 
road segment and traffic status output vector using online traffic 
data. Based on the proposed system architecture, online traffic 
data is transformed into labeled data, which can be used to 
construct a multi-layer perceptron (MLP) network. MLP is one 
of the deep neural networks, while deep learning is an emerging 
data-driven paradigm and has been used for solving complex 
and nonlinear traffic problems [57]. Compared with deep belief 
network (DBN) and stacked autoencoder (SAE), MLP shows 
promising results when dealing with labeled data. 

Based on the traffic characteristics generated from model 
learning, Fig. 6 illustrates the network structure of an MLP with 
two hidden layers for parameter learning of each road segment. 
The input vector 𝒙𝒙 = {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5}  passes through the 
hidden layers and generate output vector 𝒚𝒚 = {𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,𝑦𝑦4}. 
𝑾𝑾𝟏𝟏 , 𝑾𝑾𝟐𝟐 , and 𝑾𝑾𝟑𝟑  denote the weighting coefficients of the 
MLP. These weighting coefficients are trained using 
backpropagation in a supervised manner, which are thus 
quantified and adjusted to form the mapping between input 
vector and output vector. Thus, the proposed MLP can be 
formulated as follows [58]. 

𝒉𝒉𝟏𝟏 = 𝑔𝑔1(𝑾𝑾𝟏𝟏 ∙ 𝒙𝒙 + 𝒂𝒂)                                                         (8) 
𝒉𝒉𝟐𝟐 = 𝑔𝑔2(𝑾𝑾𝟐𝟐 ∙ 𝒉𝒉𝟏𝟏 + 𝒃𝒃)                                                         (9) 
𝒚𝒚 = 𝑔𝑔3(𝑾𝑾𝟑𝟑 ∙ 𝒉𝒉𝟐𝟐 + 𝒄𝒄)                                                         (10) 

where 𝒂𝒂, 𝒃𝒃, and 𝒄𝒄 denote weights. 𝑔𝑔1, 𝑔𝑔2, and 𝑔𝑔3 denote non-
linear activation functions such as sigmoid, hyperbolic tangent 
tanh, and rectified linear function ReLU.  

For each road segment (𝑖𝑖,ℎ), the errors between the observed 
value 𝑓𝑓(𝑖𝑖,ℎ)  and the forecasted value 𝑓𝑓(𝑖𝑖,ℎ)  are quantified in 
terms of the mean absolute error (MAE), the mean relative error 
(MRE), and the root means square error (RMSE). The 
formulation of these indices is shown as follows [25]. 
𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝑛𝑛
∙ ∑ |𝑓𝑓(𝑖𝑖,ℎ) − 𝑓𝑓(𝑖𝑖,ℎ)|𝑛𝑛

𝑖𝑖=1                                                 (11) 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∙ ∑ �

𝑓𝑓(𝑖𝑖,ℎ)−𝑓̂𝑓(𝑖𝑖,ℎ)

𝑓𝑓(𝑖𝑖,ℎ)
�𝑛𝑛

𝑖𝑖=1                                                  (12) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∙ ∑ (𝑓𝑓(𝑖𝑖,ℎ) − 𝑓𝑓(𝑖𝑖,ℎ))2𝑛𝑛

𝑖𝑖=1                                   (13) 

C. Collaborative optimization mechanism 
To enhance collaborative relations between road segments 

and vehicles, a collaborative optimization mechanism is thus 
proposed by combining short-term traffic forecasting and real-
time routing optimization, with the consideration of three KPIs, 
namely travel distance, travel time, and fuel consumption. Real-
time vehicular data is used to determine and update the optimal 
route for vehicles until the vehicle arrives at the destination. 

Based on the online learning data-driven model, the traffic 
status probability of each route from 𝑅𝑅 is formulated as follows. 

𝑃𝑃𝑟𝑟𝑗𝑗(𝑦𝑦) =
∏ 𝛽𝛽(𝑖𝑖,ℎ)∙�𝑃𝑃(𝑖𝑖,ℎ)(𝑦𝑦)+𝜀𝜀𝑟𝑟𝑗𝑗�(𝑖𝑖,ℎ)∈𝑆𝑆𝑟𝑟𝑗𝑗
∑ ∏ [𝑃𝑃(𝑖𝑖,ℎ)(𝑦𝑦𝑘𝑘)+𝜀𝜀𝑟𝑟𝑗𝑗](𝑖𝑖,ℎ)∈𝑆𝑆𝑟𝑟𝑗𝑗
4
𝑘𝑘=1

                                      (14) 

where 𝑃𝑃𝑟𝑟𝑗𝑗 denotes the traffic status probability function of route 
𝑟𝑟𝑗𝑗 . If 𝑃𝑃𝑟𝑟𝑗𝑗(𝑦𝑦 = 𝐹𝐹𝐹𝐹 ∪ 𝑁𝑁𝑁𝑁) > 𝜀𝜀𝑟𝑟𝑗𝑗 , route 𝑟𝑟𝑗𝑗  will be chosen as an 
alternative route and added to a new set 𝑅𝑅∗. 𝛽𝛽(𝑖𝑖,ℎ) is an indicator 
of road events, which is set as 0 if these is an event such as a 
traffic accident on road segment (𝑖𝑖,ℎ), otherwise it is set as 1. 
𝜀𝜀𝑟𝑟𝑗𝑗 is a user-specified positive value. 

Real-time routing optimization is then implemented with the 
consideration of three KPIs, namely travel distance, travel time, 
and fuel consumption. The objective of real-time routing 
optimization is to determine an optimal route with the minimum 
sum of weighted total travel distance, total travel time, and total 
fuel consumption, which is formulated as follows. 

Fig. 6.  Network structure of a multi-layer perception for parameter learning. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

7 

min
𝑟𝑟𝑗𝑗∈𝑅𝑅∗

𝜔𝜔𝑇𝑇𝑇𝑇 ∙
𝑇𝑇𝐷𝐷𝑟𝑟𝑗𝑗
𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝜔𝜔𝑇𝑇𝑇𝑇 ∙
𝑇𝑇𝑇𝑇𝑟𝑟𝑗𝑗
𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝜔𝜔𝐹𝐹𝐹𝐹 ∙
𝐹𝐹𝐹𝐹𝑟𝑟𝑗𝑗
𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚

                  (15) 

subject to 𝑇𝑇𝑇𝑇𝑟𝑟𝑗𝑗 = ∑ 𝑑𝑑(𝑖𝑖,ℎ)(𝑖𝑖,ℎ)∈𝑆𝑆𝑟𝑟𝑗𝑗
                                        (16) 

𝑇𝑇𝑇𝑇𝑟𝑟𝑗𝑗 = ∑ 𝑑𝑑(𝑖𝑖,ℎ)

𝐴𝐴𝐴𝐴𝐴𝐴
(𝑖𝑖,ℎ)+∑ ∆𝑡𝑡(𝑖𝑖,ℎ),𝑘𝑘

𝑖𝑖
𝑘𝑘=1

(𝑖𝑖,ℎ)∈𝑆𝑆𝑟𝑟𝑗𝑗
                                  (17) 

𝐹𝐹𝐹𝐹𝑟𝑟𝑗𝑗 = ∑ [𝛼𝛼(𝑖𝑖,ℎ)+∑ ∆𝑡𝑡(𝑖𝑖,ℎ),𝑘𝑘
𝑖𝑖
𝑘𝑘=1

∙ 𝑑𝑑(𝑖𝑖,ℎ)](𝑖𝑖,ℎ)∈𝑆𝑆𝑟𝑟𝑗𝑗
                     (18) 

where  𝑇𝑇𝐷𝐷𝑟𝑟𝑗𝑗 , 𝑇𝑇𝑇𝑇𝑟𝑟𝑗𝑗 , and 𝐹𝐹𝐶𝐶𝑟𝑟𝑗𝑗  denote the total travel distance, 
travel time, and fuel consumption of route 𝑟𝑟𝑗𝑗. 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, 𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, 
and 𝐹𝐹𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚  denote the maximum travel distance, travel time, 
and fuel consumption of routes from 𝑅𝑅∗. 𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,ℎ)+∑ ∆𝑡𝑡(𝑖𝑖,ℎ),𝑘𝑘

𝑖𝑖
𝑘𝑘=1

 
denotes the predicted average vehicle speed of road segment 
(𝑖𝑖,ℎ) at the predicted arrival time 𝑡𝑡 + ∑ ∆𝑡𝑡(𝑖𝑖,ℎ),𝑘𝑘

𝑖𝑖
𝑘𝑘=1 , while the 

time interval of short-term forecasting is determined by the 
arrival time of the vehicle on the next road segment. 

To generate a finite set 𝑅𝑅 of feasible routes and the optimal 
route for vehicles, the ant colony optimization (ACO) algorithm 
is used, which is a meta-heuristic method for solving vehicular 
routing problems in an efficient manner [59]. Each artificial ant 
finds the shortest path from the start point to the destination in 
road networks. At each step, the next node is chosen based on 
the pheromone trails and heuristic information. The possibility 
𝑃𝑃(𝑖𝑖,ℎ)
𝑘𝑘  of the 𝑘𝑘th ant moving from road node 𝑖𝑖 to the next node ℎ 

at time 𝑡𝑡 is formulated as follows. 

𝑃𝑃(𝑖𝑖,ℎ)
𝑘𝑘 (𝑡𝑡) = �

�𝜏𝜏(𝑖𝑖,ℎ)(𝑡𝑡)�
𝛼𝛼∙�𝜂𝜂(𝑖𝑖,ℎ)(𝑡𝑡)�

𝛽𝛽

∑ �𝜏𝜏(𝑖𝑖,ℎ)(𝑡𝑡)�
𝛼𝛼∙�𝜂𝜂(𝑖𝑖,ℎ)(𝑡𝑡)�

𝛽𝛽
ℎ∈𝑁𝑁𝑘𝑘

,ℎ ∈ 𝑁𝑁𝑘𝑘

0                                 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
                  (19) 

where 𝜏𝜏(𝑖𝑖,ℎ)  denotes the pheromone value on road segment 
(𝑖𝑖,ℎ), 𝜂𝜂(𝑖𝑖,ℎ) denotes the heuristic information.  

During the iterative process, the optimal route is stored, and 
pheromone trails are updated considering evaporation 𝜌𝜌, until 
the termination rule is reached. The updating process can be 
formulated as follows. 
𝜏𝜏(𝑖𝑖,ℎ)(𝑡𝑡 + 1) = (1 − 𝜌𝜌)𝜏𝜏(𝑖𝑖,ℎ)(𝑡𝑡) + ∑ ∆𝜏𝜏(𝑖𝑖,ℎ)

𝑘𝑘𝑛𝑛
𝑘𝑘=1                 (20) 

where ∆𝜏𝜏(𝑖𝑖,ℎ)
𝑘𝑘  denotes pheromone value on road segment (𝑖𝑖,ℎ), 

released by the 𝑘𝑘th ant. 𝜌𝜌 denotes evaporation rate, 0 < 𝜌𝜌 < 1. 

V. CASE STUDY 
To validate the feasibility and efficiency of the online learning 

collaborative method, a case study based on Xi’an city is 
presented. Roadside monitoring devices such as ANPR cameras, 
inductive-loop and microwave detectors were used for online 
traffic data collection. The traffic statistical data includes 2018 
annual data and traffic data in 5-minute intervals, which was 
obtained from the Traffic Bureau of Shaanxi Province. Based 
on the Xi’an city road networks and the analysis of these data, 
simulation experiments were designed and conducted in the 
laboratory. Specifically, the uncertain impacts of dynamics 
such as traffic congestion and some road events such as traffic 
accidents were considered in this case study.  

Fig. 7 illustrates a part of the Xi’an city road networks, which 
is composed of 358 road nodes and 593 road segments. The 
online information of all road segments for feasible routes is 
given in Table I. 𝑡𝑡 denotes the arrival time on the road segment 
(𝑖𝑖,ℎ). Totally 49 road segments were under the saturated traffic 

or traffic congestion conditions, while 2 road events were 
specially set on the road segments (5, 19) and (119, 135).  

Computational experiments were conducted with Hadoop 
3.1.3 cluster on two servers each includes two Xeon E5-2690V4 
CPU and 64 GB RAM. To begin with, initialization was 
executed, and the start time was set as 0s. The initial set of 
feasible routes was 𝑅𝑅 = {𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3, 𝑟𝑟4, 𝑟𝑟5} and 𝜀𝜀𝑟𝑟𝑗𝑗 was set at 0.1. 
The weighting coefficients (𝜔𝜔𝑇𝑇𝑇𝑇 ,𝜔𝜔𝑇𝑇𝑇𝑇,𝜔𝜔𝐹𝐹𝐹𝐹) were set at (0.3, 
0.5, 0.2). In the simulation experiments, five test vehicles of the 
same type were driven from the start point to the destination, 
while the online learning data-driven model was running on the 
servers at the same time. All test vehicles were preinstalled with 
embedded devices including the sensors, processors, and 
communication modules. Real-time vehicular data was 
collected by on-board units and transmitted to the cloud 
computing platform through communication networks. 
Meanwhile, real-time optimal route generated by the online 
learning data-driven model was transmitted from the cloud 
computing platform to the vehicles.  

The optimization results of the online learning data-driven 
model are shown in Table II. The free flow and non-saturated 
traffic status probabilities of routes 𝑟𝑟1 and 𝑟𝑟3 are 0 due to the 
road events on the road segments (119, 135). Consequently, the 
set of alternative routes is 𝑅𝑅∗ = {𝑟𝑟2, 𝑟𝑟4, 𝑟𝑟5}.  

The set of road node sequence for route 𝑟𝑟2 is {2, 15, 29, 30, 
44, 46, 47, 48, 49, 50, 63, 86, 87, 126, 138, 145, 156, 174, 192, 
193, 194, 204, 220, 243, 242, 262, 263}. The total travel 
distance is 10.30km. The total travel time is 3444s, while the 
total fuel consumption is 0.63L.  

The set of road node sequence for route 𝑟𝑟4 is {2, 3, 4, 5, 6, 7, 
8, 22, 37, 50, 63, 86, 87, 126, 138, 145, 156, 174, 192, 193, 194, 
204, 220, 243, 242, 262, 263}. The total travel distance is 
10.20km. The total travel time is 3211s, which is around 6.7% 
shorter than that of the route 𝑟𝑟2. The total fuel consumption is 
0.63L. 

The set of road node sequence for route 𝑟𝑟5 is {2, 15, 29, 30, 
28, 43, 45, 55, 56, 70, 76, 101, 102, 103, 104, 132, 151, 170, 
186, 214, 227, 237, 258, 259, 260, 261, 262, 263}. The total 
travel distance is 10.60km, which is roughly 3% longer than 
that of the route 𝑟𝑟2 and roughly 4% longer than that of the route 
𝑟𝑟4. The total travel time is 2924s, which is roughly 15% shorter 
than that of the route 𝑟𝑟2 and roughly 9% shorter than that of the 
route 𝑟𝑟4. The total fuel consumption is 0.66L. 

The efficiency of the proposed method was also evaluated, 
and the results show that the computation time of each process 
is less than 1s, which can meet the requirements of applications 
with the proposed method in real-time environments. 

 
Fig. 7.  A part of Xi’an city road networks. 
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To compare with the existing methods, including the GIS-
based routing methods [30] and real-time routing methods [31], 
experimental performance simulation was also conducted based 
on the same benchmark. GIS-based routing method uses spatial 
data and chose route 𝑟𝑟3 as the optimal route, while the real-time 
routing method uses real-time traffic data and chose 𝑟𝑟2 as the 
optimal route. The comparison results are shown in Fig. 8. The 
proposed method outperformed the GIS-based routing method 
and real-time routing method by reducing the total travel time 
of 23.6% and 15% respectively. While to compare with other 

prediction-based routing methods using limited traffic data 
from taxi GPS traces [60] or detectors [61], the proposed online 
learning collaborative method mainly focuses on unsolved 
problems of data integration from separate and independent 
traffic subsystems as well as the collaboration relations between 
road segments and vehicles.  

Fig. 9 illustrates a proof of concept prototype system of the 
proposed online learning data-driven model. In future urban 
traffic systems, online traffic data from road segments and real-
time vehicular data from individual vehicles are easily collected 

TABLE I 
REAL-TIME INFORMATION OF ROAD SEGMENTS FOR FEASIBLE ROUTES 

𝑅𝑅 (𝑖𝑖,ℎ) 𝑑𝑑(𝑖𝑖,ℎ)(km) 𝑡𝑡(s) 𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖,ℎ)(km/h) 𝛼𝛼(𝑖𝑖,ℎ)(L/100km) 𝛽𝛽(𝑖𝑖,ℎ) 𝑃𝑃(𝑖𝑖,ℎ)(𝐹𝐹𝐹𝐹) 𝑃𝑃(𝑖𝑖,ℎ)(𝑁𝑁𝑁𝑁) 𝑃𝑃(𝑖𝑖,ℎ)(𝑆𝑆𝑆𝑆) 𝑃𝑃(𝑖𝑖,ℎ)(𝑇𝑇𝑇𝑇) 
𝑟𝑟1 (2,15) 0.40 0 20 6.5 1 0.8 0.1 0.1 0 
𝑟𝑟1 (15,29) 0.19 72 5 6.0 1 0.1 0.1 0.6 0.2 
𝑟𝑟1 (29,30) 0.29 209 10 6.0 1 0.1 0.4 0.2 0.3 
𝑟𝑟1 (30,44) 0.29 313 15 6.0 1 0.5 0.1 0.3 0.1 
𝑟𝑟1 (44,46) 0.29 383 25 6.5 1 0.4 0.3 0.2 0.1 
𝑟𝑟1 (46,47) 0.90 425 10 6.0 1 0.3 0.1 0.5 0.1 
𝑟𝑟1 (47,60) 0.17 749 15 6.0 1 0.2 0.3 0.4 0.1 
𝑟𝑟1 (60,81) 0.55 789 10 6.0 1 0.2 0.2 0.4 0.2 
𝑟𝑟1 (81,114) 0.24 987 5 6.0 1 0.1 0.1 0.6 0.2 
𝑟𝑟1 (114,118) 0.26 1160 10 6.0 1 0.1 0.2 0.5 0.2 
𝑟𝑟1 (118,119) 0.27 1254 5 6.0 1 0.1 0.2 0.4 0.3 
𝑟𝑟1 (119,135) 0.23 1448 5 6.0 0 0.1 0.1 0.5 0.3 
𝑟𝑟1 (135,142) 0.35 1614 15 6.0 1 0.4 0.3 0.2 0.1 
𝑟𝑟1 (142,154) 0.35 1698 15 6.0 1 0.3 0.4 0.1 0.2 
𝑟𝑟1 (154,162) 0.40 1782 10 6.0 1 0.4 0.3 0.1 0.2 
𝑟𝑟1 (162,172) 0.27 1926 20 6.5 1 0.4 0.2 0.3 0.1 
𝑟𝑟1 (172,189) 0.60 1974 5 6.0 1 0.1 0.1 0.3 0.5 
𝑟𝑟1 (189,195) 0.30 2406 10 6.0 1 0.2 0.3 0.4 0.1 
… … … … … … … …. … … … 
𝑟𝑟1 (261,262) 0.40 3504 20 6.5 1 0.3 0.4 0.2 0.1 
𝑟𝑟1 (262,263) 0.30 3576 15 6.0 1 0.3 0.3 0.2 0.2 
𝑟𝑟2 (2,15) 0.40 0 20 6.5 1 0.8 0.1 0.1 0 
𝑟𝑟2 (15,29) 0.19 72 5 6.0 1 0.1 0.1 0.6 0.2 
𝑟𝑟2 (29,30) 0.29 209 10 6.0 1 0.1 0.4 0.2 0.3 
… … … … … … … …. … … … 
𝑟𝑟2 (262,263) 0.30 3390 20 6.5 1 0.4 0.3 0.2 0.1 
𝑟𝑟3 (2,3) 0.50 0 20 6.5 1 0.2 0.5 0.1 0.2 
𝑟𝑟3 (3,4) 0.35 90 25 6.5 1 0.3 0.4 0.2 0.1 
𝑟𝑟3 (4,18) 0.45 140 5 6.0 1 0.1 0.2 0.6 0.1 
… … … … … … … …. … … … 
𝑟𝑟3 (119,135) 0.23 1610 5 6.0 0 0 0.1 0.8 0.1 
… … … … … … … …. … … … 
𝑟𝑟3 (262,263) 0.30 3757 15 6.0 1 0.3 0.3 0.2 0.2 
𝑟𝑟4 (2,3) 0.50 0 20 6.5 1 0.2 0.5 0.1 0.2 
𝑟𝑟4 (3,4) 0.35 90 25 6.5 1 0.3 0.4 0.2 0.1 
𝑟𝑟4 (4,5) 0.50 140 5 6.0 1 0.1 0 0.3 0.6 
… … … … … … … …. … … … 
𝑟𝑟4 (262,263) 0.30 3139 15 6.0 1 0.3 0.3 0.2 0.2 
𝑟𝑟5 (2,15) 0.40 0 20 6.5 1 0.8 0.1 0.1 0 
𝑟𝑟5 (15,29) 0.19 72 5 6.0 1 0.1 0.1 0.6 0.2 
𝑟𝑟5 (29,30) 0.29 209 10 6.0 1 0.1 0.4 0.2 0.3 
… … … … … … … …. … … … 
𝑟𝑟5 (262,263) 0.30 2852 15 6.0 1 0.3 0.3 0.2 0.2 

 TABLE II 
OPTIMIZATION RESULTS OF THE ONLINE LEARNING DATA-DRIVEN MODEL 

Route 𝑟𝑟1 𝑟𝑟2 𝑟𝑟3 𝑟𝑟4 𝑟𝑟5 

Road node sequence 

{2,15,29,30,44,46,47, 
60,81,114,118,119, 

135,142,154,162,172, 
189,195,196,216,240, 
251,260,261,262,263} 

{2,15,29,30,44,46,47, 
48,49,50,63,86,87,126,
138,145,156,174,192, 
193,194,204,220,243, 

242,262,263} 

{2,3,4,18,34,47,60,81,
114,118,119,135,142, 
154,162,172,189,195, 

196,216,240,251, 
260,261,262,263} 

{2,3,4,5,6,7,8,22,37,
50,63,86,87,126,138

,145,156,174,192, 
193,194,204,220, 
243,242,262,263} 

{2,15,29,30,28,43,45, 
55,56,70,76,101,102, 
103,104,132,151,170, 
186,214,227,237,258, 
259,260,261,262,263} 

𝑃𝑃𝑟𝑟𝑗𝑗,𝑡𝑡(𝐹𝐹𝐹𝐹 ∪ 𝑁𝑁𝑁𝑁)  0 0.64 0 0.82 0.89 
Total travel distance (km) 9.40 10.30 9.39 10.20 10.60 
Total travel time (s) 3648 3444 3829 3211 2924 
Total fuel consumption (L) 0.57 0.63 0.58 0.63 0.66 
Computation time (s) 0.40 0.35 0.46 0.42 0.43 
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and aggregated by roadside monitoring devices and preinstalled 
on-board units (OBU). Thus, with the help of the CPS model 
and machine learning algorithms, road segments and vehicles 
are made ‘smart’, with the capability of active perception, 
active response, and autonomous decision-making. In Fig. 9, an 
OBU with a GPS tracker was installed on the vehicle to capture 
real-time vehicular data such as current location and speed, 
while roadside ANPR cameras and detectors were used to 
collect online traffic data. The collected data was uploaded to 
the cloud computing platform through wireless communication 
networks. The online learning data-driven model with model 
learning and parameter learning was executed on the cloud 
computing platform, extracting prior knowledge from the 
collected historical and online traffic data. The collaborative 
optimization mechanism was realized by combing short term 
traffic forecasting and real-time routing optimization. 
Consequently, the optimal route result was generated and 
transmitted to vehicular cloud clients such as thin clients, 
mobile apps, and web browsers.  

For the scalability and latency problems, the optimal route 
results of computational experiments show that the proposed 
method has sub-second performance, thus it is reasonable to use 
in real-life applications. While data transmission is conducted 
using wireless communication networks, including Wi-Fi, 
satellite networks, IEEE 802.11p, and 4G/5G. IEEE 802.11p 
provides data rates ranging from 6 to 27 Mbps, while 4G 
provides high-speed Internet of 100 Mbps and the 5G edge rate 
ranges from 100 Mbps to 1 Gbps. Worldwide interoperable for 
Microwave Access (WiMAX) can be used to provide mobile 
broadband services at a vehicular speed of up to 350 km/h.  

VI. CONCLUSION AND FUTURE WORK 
To integrate distributed and separate traffic infrastructures 

and enhance collaboration between urban traffic systems and 

individual vehicles, an online learning collaborative method is 
proposed by combining short term traffic forecasting and real-
time routing optimization. The main contributions of this work 
include the design of a three-layer system architecture of online 
learning collaborative optimization, traffic and vehicular data 
fusion and technologies integration, and a case study based on 
the Xi’an city with a proof of concept prototype system.  

As the theoretical foundation and practical guide of the 
proposed online learning collaborative method, a three-layer 
system architecture is thus designed to integrate separate and 
independent traffic subsystems with computational resources. 
To establish the mapping between the physical entities and 
virtual models, a CPS model is developed to depict the real-
time status and dynamical behavior of road segments and 
vehicles. Based on the online traffic data collected from road 
segments and real-time vehicular data captured from vehicles, 
an online learning data-driven model including model learning 
and parameter learning is constructed to extract prior 
knowledge from the collected data. Also, a collaborative 
optimization mechanism is proposed to strengthen the self-
adaptive collaboration between road segments and vehicles by 
combining short-term traffic forecasting and real-time routing 
optimization. 

To demonstrate the feasibility and efficiency of the proposed 
method, a case study based on Xi’an city is introduced with the 
consideration of three KPIs, namely travel distance, travel time, 
and fuel consumption. The experimental results indicate that the 
proposed method is effective to reduce the travel time and the 
computation time used is reasonable in real-life applications. 

For future research, other types of models and methods for 
short-term traffic forecasting and real-time routing optimization 
will be further explored. Besides, the proposed method will also 
be adopted in real-life environments.  
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Fig. 8.  Comparison between the existing methods and the proposed method. 

Fig. 9.  Proof of concept prototype system. 
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