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The product-service system (PSS) business model has received increasing attention in equipment
maintenance studies, as it has the potential to provide high value-added services for equipment users
and construct ethical principles for equipment providers to support the implementation of circular
economy. However, the PSS providers in equipment industry are facing many challenges when imple-
menting Industry 4.0 technologies. One important challenge is how to fully collect and analyse the
operational data of different equipment and diverse users in widely varied conditions to make the PSS
providers create innovative equipment management services for their customers. To address this chal-
lenge, an active preventive maintenance approach for complex equipment is proposed. Firstly, a novel
PSS operation mode was developed, where complex equipment is offered as a part of PSS and under
exclusive control by the providers. Then, a solution of equipment preventive maintenance based on the
operation mode was designed. A deep neural network was trained to predict the remaining effective life
of the key components and thereby, it can pre-emptively assess the health status of equipment. Finally, a
real-world industrial case of a leading CNC machine provider was developed to illustrate the feasibility
and effectiveness of the proposed approach. Higher accuracy for predicting the remaining effective life
was achieved, which resulted in predictive identification of the fault features, proactive implementation
of the preventive maintenance, and reduction of the PSS providers’ maintenance costs and resource
consumption. Consequently, the result shows that it can help PSS providers move towards more ethical
and sustainable directions.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the increasing pressure from global competition and
environmental protection, many manufacturing enterprises are
making efforts to explore and employ a more sustainable business
model aligned with the developing ethical principles of enterprise
social responsibility and multi-generational equity for sustainable
societies (Luthra and Mangla, 2018; Man and Strandhagen, 2017;
Nemoto et al., 2015). The purpose is to provide high value-added
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services in addition to the traditional design and manufacturing
businesses (Zheng et al., 2020), and to promote the implementation
of cleaner production (CP) and circular economy (CE) for ethical and
sustainable business development (Lopes de Sousa Jabbour et al.,
2018; Yadav et al., 2020). In this context, various concepts, fea-
tures and advantages of the product-service system (PSS) have
been studied by researchers (Beuren et al., 2013; Meier et al., 2010;
Yang and Evans, 2019; Zheng et al., 2020). Recently, Halstenberg
and Stark (2019) developed a PSS architecture for realizing CE. A
systemic design approach for integrating PSS and CE in the context
of business model innovation was investigated by Fernandes et al.
(2020).

Currently, the Industry 4.0 paradigm has become more popular
because of recent advancements in big data analytics (BDA), cyber-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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AE Autoencoder
BDA Big data analytics
CE Circular economy
CP Cleaner production
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PSS Product-service system
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RJ45 Registered jack 45
RS-232 Recommended standard 232
SMEs Small and medium-sized enterprises
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physical system (CPS) and industrial internet of things (IIoT) (Liu
et al., 2020; Ren et al., 2019; Wan et al., 2017). In the Industry 4.0
paradigm, CP strategies and advanced information technologies
provide opportunities for ethical sustainable societal development
(Inigo and Blok, 2019). As pointed by Zheng et al. (2018), the
combination of PSS, CPS and Industry 4.0 can enable innovative
applications of products and services. Meanwhile, as an enabler for
sustainable development, exploring the potentials of Industry 4.0
in CP to construct an ethical criterion has become one of the hottest
topics for CE (Matallín-S�aez et al., 2019; Stock et al., 2018). For
instance, Jensen and Remmen (2017) analysed different product
stewardship means (e.g. data management, extended PSS) in In-
dustry 4.0 for enabling CE from a manufacturer’s perspective, and
Blunck and Werthmann (2017) discussed the potential of Industry
4.0 applications to realize sustainable production and to create CE.
The key components of industrial symbiosis practices, and the
research gaps combined Industry 4.0, CE and big data were inves-
tigated by Tseng et al. (2018). A product and service design
approach for CP and smart production was developed by Lin (2018)
to empower Industry 4.0 in the CE of a glass recycling industry.
Moreover, Halse and Jæger (2019) analysed the barriers that
manufacturing industry adopts Industry 4.0 to achieve CE, Rosa
et al. (2020) assessed the relations between CE and Industry 4.0,
and Dev et al. (2020) proposed amodel for sustainable supply chain
by the integration of Industry 4.0 principles and CE approaches to
carry out CP strategy. These research achievements provide insights
for practitioners to integrate Industry 4.0 and CP as well as CE to
develop more sustainable business models, and to extend enter-
prise social responsibility and business ethics.

Equipment maintenance provides numerous opportunities for
reducing usage cost, decreasing influence of product-service life-
cycle on natural environment and more efficient resource utiliza-
tion. Therefore, maintenance service can benefit to establish a
balance among economic, social, and environmental goals (Behzad
et al., 2019; Franciosi et al., 2018). In the complex equipment in-
dustry (e.g. CNC machine centre, aero-engine, etc.), maintenance
and repair services are normally provided during the use stage. By
providing an ethical and sustainable PSS which has the potential to
benefit all stakeholdersdthe complex equipment industry is in a
uniquely positive position to catalyse changes towards sustainable
enterprises. Additionally, considering that complex equipment is
usually a durable product with a lifespan of over 10e30 years (Zhu
et al., 2012), the opportunities for application of PSS in equipment
maintenance to develop and implement ethical and sustainable
business models are tremendous. Therefore, in the Industry 4.0
context, the potential benefits of integrating PSS with maintenance
services have attracted many researchers’ attention.

For example, Goncalves and Kokkolaras (2017) developed a
collaborative PSS between original equipment manufacturers
(OEM) and maintenance, repair and overhaul (MRO) companies.
Such cooperation can benefit all stakeholders (i.e. OEM, MRO
companies, operators and end-users), to promote the development
of CE and to accelerate the transition to sustainable business
models. Exner et al. (2017) reviewed the existing maintenance
approaches and analysed how maintenance services can be con-
nected to the PSS to enhance machine availability, while reducing
environmental concerns by reducing energy consumption and
costs of maintenance procedures. D. Mourtzis et al. (2018) imple-
mented an assistance application for the unscheduledmaintenance
of manufacturing equipment following the PSS approach. Recent
research achievements, such as lease-oriented opportunistic
maintenance for multi-unit systems (Xia et al., 2017), cloud-based
augmented reality remote maintenance (Mourtzis et al., 2017),
maintenance strategies planning and decision-making for aero-
engines (Thomsen et al., 2015), and service-oriented multi-player
maintenance grouping strategy (Chang et al., 2019), etc., have
provided a solid foundation to enable design and development of
PSS-based maintenance approaches for complex equipment. These
studies provided opportunities for industrial practitioners to apply
environmental ethics during the implementation of sustainable
production and CEwithin the Industry 4.0 paradigm (Keitsch, 2018;
Mangla et al., 2017; Tunn et al., 2019).

Despite the progress on PSS-based equipment maintenance
studies, major limitations still exist:

1) the existing literature has been primarily focused on mainte-
nance decision based on the operational data of smaller cluster
equipment (e.g. the data of smaller cluster equipment and
smaller cluster users in specific conditions), which have resulted
in low efficiency and accuracy of fault diagnosis as well as
wastage of resources during maintenance procedures;

2) many studies on PSS-based equipment maintenance were only
focused on the breakdown maintenance, which is a passive
equipment management style. This approach has led to a sus-
pension in some production processes, and cause increased
production costs and energy consumption.

These limitations have had many negative impacts on reducing
resource consumption and pollutant emission in manufacturing
processes thereby violating the 3R (reduction, reuse and recycling)
principle of CE (Lieder and Rashid, 2016). As pointed by Inigo and
Blok (2019), the ethical issues should be integrated into the initial
planning phases of implementation of CE, to make more effective
progress toward sustainable business operations. However, this
perspective has usually been neglected in the existing research.
From these limitations, the research questions related to this paper
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arise are:

1) how can industrial practitioners fully use the multi-source
operational data of equipment in different conditions to
improve the management and control capability of equipment
during operation stage, and to implement synergies among CP,
CE and business ethics in the context of Industry 4.0?

2) how can implementation of a procedural approach for achieving
real-time and off-line data analysis to evaluate the health status
of equipment and to work out proactive maintenance planning,
so as to establish a balance amongst economy, environment and
society in the context of ethical business development?

As previously mentioned, Industry 4.0 has catalysed integra-
tion of information and communication technologies into all as-
pects of manufacturing, and can enhance the ability to
communicate and cooperate among all lifecycle stakeholders. As a
result, the operations status data of all PSS offerings in different
conditions can be captured. These operational data are valuable
assets to produce innovative applications, such as energy con-
sumption process optimization, production planning optimization,
sustainable supply chain management and active preventive
maintenance. However, active preventive maintenance for com-
plex equipment in the context of Industry 4.0 must address these
significant challenges:

1) how to develop a PSS-based operation mode to collect the op-
erations status data of different equipment andmultiple users in
different conditions, to create means to inter-connect equip-
ment, end-users and ethics to reduce waste and improve pro-
duction efficiency;

2) how to design a solution to identify faults earlier and implement
active preventive maintenance for better management of com-
plex equipment, to enhance utilization and to reduce material
mobility throughout the whole society based upon ethically
sound principles.

To address these challenges, an active preventive maintenance
approach for complex equipment based on PSS was developed by
the authors of this paper. It integrates three important charac-
teristics. The first is a novel PSS-based operation mode for
equipment leasing and sharing to collect the operational data of all
equipment in different conditions. The second is smart equipment
with the capability of active sensing and dynamic interaction. The
third is a method of predicting the remaining effective life (REL)
for complex equipment to reduce the deviations between main-
tenance planning and implementation of maintenance activities.
The proposed approach can become a new paradigm for complex
equipment industries to implement real-time and early decision-
making of equipment maintenance. Additionally, it has the po-
tential to promote the implementation of CP and CE among
corporately, socially responsible business chains designed to
reduce resource and energy consumption, and to improve worker
health and safety in the utilization of equipment and provision of
customer services.

The remainder of this paper is organised as follows. Section 2
reviews the relevant literature. Section 3 outlines the novel PSS-
based operation mode for active preventive maintenance and
compares it with the traditional maintenance approach. In Section
4, the conceptual architecture was outlined as a solution for active
preventive maintenance for complex equipment based on the
proposed operation mode. In Section 5, a case study is used to
illustrate the feasibility and effectiveness of the proposed solution.
In Section 6, the conclusions and future works are summarized.
2. Literature review

Maintenance plays an important role in ensuring continuous
production and improving equipment utilization. To achieve these
goals, leasing or sharing complex equipment by multiple users
combined with the PSS has become a promising way (Exner et al.,
2017; Meier et al., 2010; Zhu et al., 2012). This section briefly re-
views related studies in two aspects: (1) the PSS paradigm, and (2)
PSS-based equipment maintenance. Current limitations on PSS-
based equipment maintenance identified from the review are
summarized at the end of Section 2.

2.1. Product-service system paradigm

As a promising business model for improving the competitive
advantage and revenue of manufacturers (Zhang et al., 2017b),
enhancing the environmental sustainability and resource utiliza-
tion ratios of societies (Tukker, 2015; J. Wang et al., 2019; Zheng
et al., 2019), academic and industrial interests in PSS have
increased significantly in recent years.

The concept of PSS was first proposed by Goedkoop et al. (1999),
who defined it as “a system of products, services, networks of
players and supporting infrastructures that continuously strive to
be competitive, to satisfy customer needs and to have lower envi-
ronmental impacts than traditional business models”. Manzini and
Vezzoli (2003) emphasized that PSS shifts the business focus from
only designing (and selling) physical products, to designing (and
selling) a system of products and services. Similar concepts were
discussed in the literature (Beuren et al., 2013; Yang et al., 2018).
The classification of PSS has been explored by (Gao et al., 2011;
Tukker, 2004). These authors highlighted that the PSS can be
mainly divided into three categories: i.e. product-oriented PSS, use-
oriented PSS and result-oriented PSS. Based on the methodologies
of product lifecycle modelling, a framework for designing an
application-oriented PSS was proposed by Yang et al. (2010). By
integrating costs and resource consumption as well as the product
status, the primary input& output parameters can be built upon for
the service process modelling.

Recently, the key success factors and issues that require special
attention during implementation of PSS in organizations were
explored by (Tukker, 2015). The opportunities from combined us-
age of big data and service-oriented business strategies were
investigated by (Opresnik and Taisch, 2015), who emphasized that
the value of big data depends on an adopted business model
including an operational mode and away to quantify value capture.
A systematic overview of PSS together with its different methods,
tactics, benefits and barriers were discussed by Annarelli et al.
(2016). To use the PSS’s lifecycle data and to improve PSS attri-
butes as well as to expand the related activities, a PSS lifecycle
model was proposed by Cavalcante and Gzara (2018). A PSS evo-
lution method, which includes a quantitative PSS classification ar-
chitecture and transformation processes were developed by Chiu
et al. (2019) to build the core competence of enterprises. Recent
investigations show that the PSS is being utilized by an increasing
number of manufacturers and could provide manufacturers with
the capability of better control and management of their products,
thereby provide numerous opportunities for manufacturers to
implement CP and CE. Through a dynamics simulation model, the
effects of combining multiple product design and PSS strategies for
slowing and closing resource loops in a CE was analysed by Franco
(2019). Inspired by the outcome-driven innovation approach, a
mixed-method for increasing consumer participation in CE-linked
PSS was studied by Hankammer et al. (2019) to strengthen the
competitive advantage of organizations. Through a set of in-
terviews with experts belonging to the waste from electrical and
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electronic equipment sector, Rosa et al. (2019) established the links
between CE benefits and the PSS-based circular business models.
Finally, the authors utilized four use cases to illustrate how to link
PSS with CE benefits. The key elements of PSS that contribute to
closed-loop resource flows and CE were explored by Zeeuw van der
Laan and Aurisicchio (2020). The authors categorized the PSS ele-
ments and their contributions to closed-loop by six architectural
levels, i.e. services, resources, stakeholders, contract, value delivery,
systems and tools. By using a case study in the electronics
manufacturing industry, Werning and Spinler (2020) identified and
analysed the potential barriers to achieve the transition from PSS to
a CE. The authors recommended that the findings of their research
allowed practitioners to map barriers to managerial re-
sponsibilities, thus improving the organizational transition process.

2.2. PSS-based equipment maintenance

Appropriately timed maintenance directly influences the life-
time of equipment and its productivity, especially for complex
equipment working in various conditions and harsh environments
(Tao et al., 2018; Wan et al., 2017). Meanwhile, through gathering
and analysing relevant operational data, the reliability of equip-
ment for the entire PSS system can be improved (Si et al., 2020).

The cutting-edge information technologies are being integrated
into all aspects of manufacturing, which is accelerating the gener-
ation of industrial big data (Thoben et al., 2017). These data can be
analysed to provide useful knowledge for product innovation
design (Manyika et al., 2011), production process and energy con-
sumption optimization (Zhang et al., 2015; Zhou et al., 2016), and
intelligent fault diagnosis and maintenance service (Jia et al., 2016;
Kumar et al., 2018). As reported by the Mckinsey Global Institute,
analyses of operation big data and provision of maintenance ser-
vices can reduce operational costs by 10%e25%, and can potentially
increase production by 5% or more (Manyika et al., 2011). Studies
such as O’Donovan et al. (2015) and Lee et al. (2015) investigated
the requirements, challenges and opportunities of industrial big
data for equipment manufacturing and maintenance applications.

Generally, an innovative business strategy or operational model
can be used to improve the maintenance service of products (Kuo
and Wang, 2012). Since the advantages of the PSS for reducing
product defects andmaintenance costs (Zhang et al., 2017b), as well
as for improving the accuracy and efficiency of maintenance tasks
(Tao et al., 2018), research on combining maintenance and PSS is
attracting more scholars’ interests. For example, to integrate
product development with maintenance service, a web-based PSS
was developed and tested by Zhu et al. (2012). Focussing upon the
MRO services in the aerospace industry, they developed amodel for
improving the PSS. In the context of PSS, a methodology for
acquiring reusable knowledge from vast amounts of operational
data for guiding maintenance decision-making was developed by
Xiao et al. (2016). The advantages of PSS-basedmaintenance service
for enhancing competitiveness and supporting sustainability as
well as for decreasing energy consumption in the steel industry
were evaluated by Marchi et al. (2016). The effectiveness of their
proposed methodology was verified in the maintenance decision-
making of an agricultural equipment manufacturing enterprise.
The relationships between OEM and MRO enterprises were ana-
lysed to develop a collaborative PSS between them (Goncalves and
Kokkolaras, 2017). The author recommended that the proposed
cooperation method can benefit all stakeholders, thereby provided
new tools and insights to make the PSS system more effective and
make the PSS providers more socially responsible. Mourtzis et al.
(2017) proposed a cloud-based PSS platform for condition-based
maintenance to detect the machine tool failures before they
occur. The authors found that the proposed platform can increase
production efficiency and reduce the resource consumption of
manufacturers by performing accurate and quick maintenance.
Following the PSS approach, an assistance application for the pre-
ventive and unscheduled maintenance of equipment was intro-
duced by Mourtzis et al. (2018). The proposed method can lead to
time and cost reduction during maintenance procedures. Based on
the leasing business of PSS, improved opportunistic maintenance
for a manufacturing systemwas investigated by Guo et al. (2019) to
decide whether to execute early preventive maintenance. The au-
thors found that one machine’s preventive maintenance can create
a maintenance opportunity for others due to the structural de-
pendencies of the manufacturing system. Therefore, the
manufacturing system can be made more effective and sustainable.
A smart PSS-based multi-player maintenance grouping strategy for
a complex systemwas proposed by Chang et al. (2019) to determine
the optimal grouping service time for each service provider. The
interaction relations among OEM and multiple service providers
were modelled and analysed by the authors. Through a numerical
example from a wind turbine, the authors found that the proposed
method can provide an effective maintenance grouping strategy for
service providers to make the enterprise more ethical and sus-
tainable, and to support the implementation of CE.

2.3. Limitations on PSS-based equipment maintenance

This sub-section summarises the limitations on PSS-based
equipment maintenance identified from the literature.

- The cutting-edge information technology makes it possible
to access and acquire the whole lifecycle data of PSS delivery
processes. Therefore, the opportunities arising from com-
bined the maintenance service and the PSS have attracted
many researchers’ attention. As highlighted by Cavalcante
and Gzara (2018), a promising application in PSS data man-
agement is the use of its lifecycle data to improve PSS values
in related activities (e.g. preventive maintenance, prediction
of need for spare parts, etc.). However, this research is still in
its infancy as documented via our literature review. There-
fore, we highlight an important challenge: how to develop a
new operation mode to collect the multi-source operational
data of the complex equipment under multiple conditions,
and to accelerate the synergies among CP, CE and business
ethics?

- Most existing studies related to PSS-based equipment
maintenance were focused upon passive maintenance,
where the operators report faults to maintenance personnel
according to the feature parameters of the equipment (Wan
et al., 2017). The faults then need to be exactly located and
eliminated, which will lead to the shutdown of production
equipment and the reduction of production efficiency. The
solution of preventive maintenance for complex equipment
based on PSS was seldom investigated. This resulted in the
situation in which PSS providers were unable to assess the
functional/operational conditions of complex equipment in a
timely manner. Therefore, they were unable to anticipate
breakdowns by providing active preventive maintenance,
and to revolutionize the way of production and consumption
within the context of ethical sustainable business
development.

According to the above analysis, under the PSS paradigm, the
solution of these two limitations can help PSS providers to monitor
multiple operating statuses and to ensure in a timely manner when
preventative repairs should be made to help to ensure the healthy
and stable operation of the complex equipment. Therefore,
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maintenance planning that combines the novel PSS operation
mode and an active preventive maintenance approach can help
equipment users to improve production efficiency, to minimize
resource waste and emissions from industrial processing, and to
reduce worker health and safety risks. This can also help to facili-
tate the PSS providers to make progress towards the CP strategy,
and to promote the implementation of CE for more sustainable and
ethical societal development.
3. An overview of a novel PSS operation mode for active
preventive maintenance

In this section, a novel PSS operation mode for active preventive
maintenance of complex equipment is outlined. The objective of
this operation mode is to better integrate the PSS delivery pro-
cesses with associated maintenance service processes, to achieve
early detection and active prevention of breakdowns based on the
real-time status of complex equipment. This operation mode can
help the OEM to extend their ethical and societal responsibilities to
the whole lifecycle by providing more value-added services to their
traditional product design and manufacturing businesses.

For better understanding, the proposed PSS mode is described
with seven characteristics, in comparison to those existing PSS
modes in the industry as shown in Table 1. The equipment is located
at the OEM’s premise, and exclusively controlled and managed by
the OEM in a centralized manner. The operator of the equipment
may be the OEM ormultiple customers. Furthermore, the operation
and maintenance data is collected and accessed by the OEM. In the
proposed mode, multiple customers lease or share all equipment at
a pre-defined location of the OEM, while in the traditional mode
each of the customers uses its own equipment at their location
individually. This means that the customers do not need to pur-
chase equipment and build plants, let alone shipping equipment to
their factories. The customers only need to pay the OEM by the
usage time or by the processing quantity. Within the novel leasing/
sharing operation mode, in addition to the equipment sharing, the
sharing of production orders, processing technologies, and pro-
fessional production operators and maintenance staffs are all
possible.

Besides, Fig. 1 illustrates the comparison of the two types of
maintenance approaches. Fig. 1 (a) describes the traditional main-
tenance approach, and Fig. 1 (b) shows the active preventive
maintenance approach of complex equipment based on the novel
PSS operation mode, respectively.

For the traditional maintenance approach, the OEM’s equipment
is sold and delivered to users with the additional after-sale services
selected according to purchase contracts. Therefore, all equipment
is decentralized operation and management by individual users. In
this case, the ownership of complex equipment belongs to various
users, who are motivated to continuously improve production ef-
ficiency and save manufacturing costs through reducing the failure
frequency and extending the service life of the complex equipment.
Therefore, equipment is operated and managed by individual users
Table 1
Comparison of the proposed PSS mode with the existing PSS modes.

Characteristics

Equipment location
Management manner
Control and manage by
Operator
Access to data by
Plant build by
Sharing of production orders, processing technologies, operators and maintenance
at their own shop floors, and equipment maintenance is performed
by the users or by third party maintenance service providers. In this
context, the owners depend upon abnormal condition system
alarms to alert them to ‘equipment faults’ which need the services
of the maintenance staff. Of course, the problems have to be
accurately located within the system. Subsequently, maintenance
tasks are performed to solve the equipment faults by making
maintenance plans and scheduling available maintenance re-
sources. The maintenance decisions are made based on extracted
feature parameters and historical label data. As a result, the real-
time operations status data of complex equipment has not been
considered in the traditional method, which can lead to a pro-
longed shutdown of equipment, and then affect the normal prog-
ress of the production assignment. Meanwhile, deviations between
themaintenance plan and task execution have happened due to the
unpredictable exceptions. As stated earlier, the implementation of
the traditional equipment maintenance method is mainly based on
the product-orientated PSS, which is chiefly the breakdown
maintenance and is a passive equipment management style.
Moreover, due to the constraints of technical skills and investment
costs, the operation state data of equipment accumulated by indi-
vidual users is incomplete, and the data is always deriving from
smaller cluster equipment. Thus, decision-making based on the
operational data of incomplete and smaller cluster equipment will
reduce the accuracy and efficiency of fault diagnosis.

For the active preventive maintenance approach based on the
novel PSS operation mode, all equipment forms a manufacturing
resource pool (Tao et al., 2014). Then, the equipment is leased and
shared by various users with an integrated service contract, which
is primarily focused on maintenance activities for complex equip-
ment. In situations where the ownership of equipment is retained
by the OEM, and all the leased and shared equipment are operated
and managed by the OEM in the premises they provide in a
centralizedmanner. Therefore, the OEM ismotivated to create a PSS
to produce more durable equipment and to extend the lifespan as
well as to provide high-quality maintenance services for their
users. This means that complex equipment is provided as a part of
PSS, and under exclusive control and maintenance by the PSS
provider. The OEM is supposed to be the best maintainers over the
equipment lifecycle, due to the fact that they are most familiar with
the assets and operational data. In other words, relying on the rich
experience and specialized technical skills, the PSS providers can
monitor the equipment’s operation state in a timely, comprehen-
sively and accurately. As a result, the real-time and multi-source
operations status data of different equipment and different users
in diverse conditions can be collected more easily and compre-
hensively. These data are valuable assets for the OEM to optimize
their daily production processes and equipment management. For
example, through analysing the real-time operational data, the
knowledge related to real-time and activemaintenance can provide
decision support for maintenance resource scheduling (e.g. actively
allocate maintenance tasks to the idle maintenance resources) and
active preventive maintenance (e.g. dynamically predict the
Proposed PSS mode Existing PSS modes

In the premises provided by the OEM In the customers’ plant
Centralized Decentralized
OEM Mainly by customers
OEM/Multiple customers Single customer
OEM Mainly by customers
OEM Customers
Available Not available



Fig. 1. Comparison of two types of maintenance approaches.
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completion time of maintenance tasks). Moreover, through inte-
gration and analysis of the real-time and historical operational
data, the remaining lifespan of equipment can be predicted and
evaluated dynamically to provide early detection of faults.

The active preventive maintenance approach proposed in this
paper has the following advantages:

Firstly, the PSS provider can provide complete solutions and
systematic services for the equipment users, especially for complex
equipment (e.g. aero-engine, high-grade CNC machine tools, etc.),
thus exempting the users from performing delicate maintenance
on complex equipment and carrying large amounts of spare part
stocks for their equipment. The users pay only for the provisions of
the agreed results, thereby, relieving the equipment users from the
high cost and high risk of purchasing complex equipment.

Secondly, the novel PSS operation mode, as described above, is
suitable for application-oriented PSS and result-oriented PSS,
which can extend the social responsibility and business ethics of
the OEM to the middle of life (MOL) and end of life (EOL) stages of
complex equipment. As a result, the OEM can refurbish, reuse and
recycle some parts of complex equipment by specialized mainte-
nance service or recycling service, to promote a closer relationship
between the manufacturers and users, and to reduce the
environmental impacts.
Thirdly, under the novel PSS operation mode, real-time opera-

tions status of all equipment (e.g. whether they are working, what
task they are processing, howmuchworkload they have, howmuch
power they consume, and which equipment are idling, etc.) can be
automatically transmitted and shared to implement the interactive
ability among them. As a result, the utilization rate of equipment
can be more effectively documented by the PSS provider, which can
assist them to optimize the leasing or sharing business. For
example, equipment that is underutilized by one user can be leased
to other users who urgently need such equipment. Such a type of
dynamic leasing or sharing contract is beneficial to improve the
equipment utilization rates and to reduce resource wastage as well
as to promote the implementation of CE.

Fourthly, within the centralized management format, the multi-
source and heterogeneous operations status data of different
equipment and different users in different conditions can help PSS
providers to improve the accuracy and efficiency of fault diagnosis
and fault prediction. Moreover, the complete and abundant data
and knowledge accumulated by the PSS provider can provide
effective support for proper operation of equipment and can help
users to select and lease the most suitable equipment for their
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needs. As a result, the proposed approach provides numerous op-
portunities for practitioners to develop and implement synergies
among business ethics, CP and CE in the Industry 4.0 context.

4. The solution of active preventive maintenance approach
based on the novel operation mode

Based on the proposed PSS operation mode, a conceptual ar-
chitecture for active preventive maintenance of complex equip-
ment was developed as depicted in Fig. 2. It includes four main
modules, namely (1) configuring smart equipment, (2) collecting
operational data, (3) active preventive maintenance based on real-
time data analysis, and (4) prediction of REL based on non-real-
time data analyses.

4.1. Configuring smart equipment

The objective of configuring smart equipment is to enhance the
sensing and interacting capability of all kinds of complex equip-
ment in the pre-defined location of the PSS provider. Therefore,
before putting the complex equipment into use, numerous sensors
should be installed to monitor the parameters of the environment,
manufacturing resources and the processing equipment. These
sensors are necessary for achieving the proposed novel PSS oper-
ation mode and implementing active preventive maintenance. In
contrast to other methods for configuring the smart objects in
different lifecycle stages (Jun et al., 2009; Zhang et al., 2017a), smart
sensors are used to establish smart equipment and to collect useful
data for active preventive maintenance. This is done because with
the continuous development and maturity of modern sensor
technologies, smart sensors can ensure high data quality and in-
formation quality (e.g. high accuracy of data due to mainly nu-
merical values) as well as sufficient data veracity (Matyas et al.,
2017). All kinds of complex equipment in the pre-defined location
of the PSS provider are made ‘smart’ by equipping the physical
Fig. 2. A conceptual architecture for active preventive maintenance appro
objects with multiple sensors to achieve a certain degree of intel-
ligence. With the support of multiple sensors, the operational sta-
tus of complex equipment and its operating environment data can
be monitored effectively.

From the moment complex equipment is put into use to the
moment the complex equipment reaches the end-of-it’s-life, the
smart sensors deployed on the complex equipment are the most
important data gathering source for the business decision-making
of the whole product lifecycle. For example, the large quantities of
data generated from smart sensors in operation and maintenance
as well as in the recovery stages can be used to improve production
efficiency, to facilitate the planning and implementation of pre-
ventive maintenance, to predict remaining lifespan and to optimize
recovery decisions (Ren et al., 2019).

4.2. Collecting operational data

Based on the configuration of smart equipment, an active
sensing environment can be constructed. As a result, a large
number of real-time and multi-source operations status data of
equipment (e.g. used by different customers, different equipment
and different operating conditions) are generated automatically.
For active preventive maintenance, all relevant data should be
collected, such as alarm events (raw and abnormal information that
reflects the operational state of the components), failure protocol,
maintenance records, equipment operations status, etc. These data
have various structures and features. For instance, alarm events are
raw sensor information that needs to be handled and analysed in
real-time. Failure protocol and maintenance records often exist in
the form of free text with low quality, which can be transferred to
the enterprise database periodically. Equipment operations status
is usually collected periodically since a reasonable sampling fre-
quency should be selected in designing the real-time monitoring
system. Pre-processing of all types of data generated and collected
in the equipment operation field is of vital importance to guarantee
ach of complex equipment based on the novel PSS operation mode.
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the effectiveness and efficiency of further data management and
data analyses. Therefore, the service-oriented architecture can be
used as a solution for implementing the data integration, such as
data cleaning, data reduction, data transformation, etc. (Zhang
et al., 2017a; Zhong et al., 2015).

Collecting the necessary and comprehensive data required to
identify equipment failures and to plan active preventive mainte-
nance activities is difficult due to the diversity and multi-sources of
data. Therefore, another important component of data collecting is
the management and configuration issues for sensor networks. To
make it function properly, a redundant sensor network considering
cost constraints and reliability theory can be designed (Aponte-Luis
et al., 2018; Marr�on et al., 2005; Morais and Mateus, 2019), which
can help to provide effective solutions for improving the compre-
hensiveness and accuracy of data collection.

4.3. Active preventive maintenance based on real-time data
analysis

During the daily production processes, a higher real-time
requirement to handle alarm data from different complex equip-
ment is needed. Therefore, in the pre-defined workspace of the PSS
provider, the key component of different equipment can be regar-
ded as active preventive maintenance items with a similar priority.
According to the features of each maintenance item, the alarm data
or operations status of equipment can be encapsulated as the items
needing maintenance. The alarm data possess the highest priority
in achieving active preventive maintenance. By constantly moni-
toring the key data of each maintenance item and comparing and
evaluating the key data with its normal value range in a real-time
manner, the active, preventive maintenance can be accomplished
by scheduling maintenance resources dynamically. The main
symbols used in this paper are described in Table 2.

The implementation steps of active, preventive maintenance
based on real-time data analysis are as follows:

Step 1: Monitoring and establishing initial active preventive
maintenance items.

Suppose there is R equipment, which constitutes a complex
equipment group, and each piece of equipment has Q components
that are monitored in real-time. Therefore, a total of R� Q
Table 2
Main symbols used in the paper.

Symbols Description

R The number of equipment
Q The number of components that each equipment should be monitored
rtr;i;j The jth real-time operations status parameters of the ith components for
Si The total number of operations status parameters that ith components ne
nr�r;i;j The lower limit of normal value of thejth operations status parameters of

nrþr;i;j The upper limit of normal value of thejth operations status parameters of

K The number of selected components of R equipment
tp The pre-set data extraction cycle
Prts The real-time operations status data set of K components of R equipment
Psc The allowed range value set of K components of R equipment at the time
WE The set of alarm events for the K components of R equipment
WE�r;i;j The alarm events when the jth real-time operations status of the ith comp

WEþr;i;j The alarm events when the jth real-time operations status of the ith comp

h The total relative lifespan loss rate of key components
ti The service time of key components under the ith operating condition
Ti The effective life of key components under the ith operating condition
r The empirical threshold of relative lifespan loss rate
εi The proportion of service time of key components under the ith operatingP

εiTi The predicted value of effective life under different operating conditions
T The expectancy-value of remaining lifespan based on a statistical analysis
a The weights (empirical parameters) of

P
εiTi

b The weights (empirical parameters) of T
components are monitored, which constitute theR� Q initial active
preventive maintenance items. Given a data set of real-time oper-
ations status parameters RT for R� Q components in Eq. (1):

RT ¼ �
rtr;i;j

��1� r�R;1� i�Q ;1� j� Si
�

(1)

Meanwhile, given a set of allowed range values NR for each
component under normal operations status in Eq. (2):

NR¼
n�

nr�r;i;j;nr
þ
r;i;j

����1� r�R;1� i�Q ;1� j� Si
o

(2)

Step 2: Extracting real-time operations status data of compo-
nents and determining maintenance items.

For KðK � QÞ components of R equipment, the real-time oper-
ations status data and allowed range value was extracted from RT
and NR , respectively. Then make Eq. (3) and Eq. (4) be:

Prts ¼
�
rtr;i;j

��1� r�R;1� i�K;1� j� Si
�

(3)

Psc ¼
n�

nr�r;i;j;nr
þ
r;i;j

����1� r�R;1� i�K;1� j� Si
o

(4)

Step 3: Comparing the operations status data with the allowed
range value in real-time.

Through comparing and evaluating the real-time operations
status data of components with the allowed range value of each
component under normal operations status, a set of alarm events
for the components can be obtained. Then the preventive mainte-
nance items that correspond to each alarm event can be deter-
mined. The set of alarm events for the components of equipment
can be represented as WE in Eq. (5):

WE¼
n
WE�r;i;j

��� rtr;i;j < nr�r;i;j
o
∪
n
WEþr;i;j

��� rtr;i;j > nrþr;i;j
o

(5)

Step 4: Triggering maintenance items and scheduling mainte-
nance resources to carry out maintenance tasks.

If the above-mentioned alarm events occurred, it can be
considered that abnormity or degradation has happened on the
corresponding components. Moreover, with the continuous accu-
mulation of abnormity or degradation, these components will
eventually breakdown. Therefore, the maintenance resources
the rth equipment
ed to be monitored in real-time
the ith components for the rth equipment

the ith components for the rth equipment

at the time tp
tp

onent of rth equipment is lower than the lower limit of its allowed range value

onent of rth equipment is higher than the upper limit of its allowed range value

condition in the actual lifespan based on a statistical analysis of historical data

of historical data
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should be scheduled dynamically to trigger the maintenance items
and to deal with the alarm events in real-time.

The maintenance resource scheduling models for different
optimization objectives, such as minimization of the completion
time for all maintenance activities (Yang and Yang, 2010) or aim to
minimize the total production loss during the process of perform-
ing all maintenance activities (Kov�acs et al., 2011), can be estab-
lished to achieve real-time and active maintenance.

Meanwhile, through statistical analyses of the maintenance
activities, the load of each maintenance resource can be calculated.
On this basis, by tracking and analysing the real-time progress of
the maintenance activities performed by each maintenance
resource, the complete time of the maintenance activities can be
predicted dynamically, which can provide decision-making support
for optimal scheduling of maintenance.
4.4. Prediction of REL based on non-real-time data analysis

The objective of the REL prediction is to enhance the accuracy
and efficiency of maintenance activities. By integrating real-time
operation status data with historical data stored in the enterprise
database, the REL of the key components of complex equipment can
be predicted. The traditional methods for assessment of equipment
lifespan are generally based on the experience of maintenance staff
(e.g. the accumulated service time or historical lifespan record), or
wait for an occurred fault of the key components. The experience-
based approach takes the using safety of complex equipment and
the operational fluency of production into consideration. However,
the experience-based method is commonly conservative, and re-
sults in wastage of maintenance resources and spare parts.
Although the fault-based approach can make the best of the life-
span that the components have, the lack of emergency measures
for dealing with sudden failures (e.g. whether the maintenance
resources are available or not, and whether there is a safe inventory
of spare parts, etc.) will result in increasedmaintenance time and to
shutdowns in the normal production processes.

In the practical production and operation process, the actual
lifespan of the key components of complex equipment is different
under different operating conditions. Therefore, large deviations
exist while relying on the accumulated service time or the historical
lifespan record of key components in various operating conditions
to decide whether to execute maintenance activities. These de-
viations will lead to conservative or excessive usage of the key
components, and further lead to serious production exceptions or
equipment faults.

To solve these highlighted problems, the relative lifespan loss
rate (Wan et al., 2017) was introduced to comprehensively measure
and evaluate the REL of the key components under different
operating conditions. The total relative lifespan loss rate of key
components can be represented as h in Eq. (6):

h¼
X ti

Ti
(6)

Here, a deep neural network (DNN) model is established based
on autoencoder (AE) to predict and estimate the effective life of a
key component under a specific operating condition Ti. Then, based
on h and Ti obtained by DNN model, and historical and real-time
operation data, the REL of a key component can be predicted. The
procedures of REL prediction are described as the following steps.

Step 1: Extracting the effective life characteristics of key
components.

An AE is one type of unsupervised neural network that includes
three layers: input layer, hidden layer and output layer. The AE can
be used to extract the key information that represents the
characteristics of the input layer data and to reduce the dimensions
of the input layer data. For example, during the numerically
controlledmachining processes, the three typical elements (spindle
speed, feed speed and cutting depth) can be used as the input data
of AE, to extract and reflect the lifespan characteristics of cutting
tools under specific operating conditions. The encoding, decoding,
and model training based on minimizing reconstruction errors are
performed in AE to realize the above objectives.

In the encoding process, the data of the input layer are trans-
formed into hidden layer data by Eq. (7):

hm ¼ f ðwxm þbÞ (7)

where input vector xm of sample m contains the parameters that
affecting the remaining lifespan of key components; hm is the
encoding vector of sample m that contains the main characteristics
of the input layer data; w and b are weight matrix and bias vector,
respectively; f ð $Þ is the encoding function.

In the decoding process, the data of the input layer are recon-
structed from the corresponding hidden layer by Eq. (8):

bxm ¼bf ð bwhmþ bbÞ (8)

where bxm is the reconstruction vector of the input data; bw and bb
areweightmatrix and bias vector, respectively; bf ð $Þ is the decoding
function.

In the training processes, the AE is constructed through the
back-propagation method to minimize the reconstruction errors
fðx; bxÞ (by Eq. (7)), and to achieve better performance of feature
extraction:

fðx; bxÞ¼ 1
M

XM
m¼1

kxm � bxmk2

¼ 1
M

XM
m¼1

kxm � bf ð bwf ðwxm þ bÞ þ bbÞk2
(9)

where the M is the total number of samples.
Step 2: Establishing DNN-based effective life prediction model

(DNN-ELPM) of key components under a specific operating
condition.

Given the strong coupling of different parameters and the di-
versity of input data (such as operating state, temperature, hu-
midity, vibration, etc.), the DNN with deep architectures can be
established to extract valuable information from raw data and
approximate complex non-linear fitting and to carry out more ac-
curate and efficient lifespan prediction. The inputs of DNN-ELPM
are the operating state parameters and the operating environ-
ment parameters of key components under a specific operating
condition. The output of DNN-ELPM is the prediction value of the
effective life of key components under this condition. Here, two
processes, i.e. pre-training and fine-tuning are included in the
DNN-ELPM establishment.

In the pre-training process, the above-mentioned AE is used to
initialize the parameters of n hidden layers, as shown in Fig. 3.
Firstly, the original AE1 is constructed by the above-mentioned
encoding, decoding and model training processes, and the
ðw1;b1Þ of AE1 encoding process is used to construct the initial
mapping relationship between the input layer and the first hidden
layer of the DNN-ELPM (Huang et al., 2019). Secondly, the above
process is repeated until the mapping parameters (weight metrics
w and bias vectors b) of all hidden layers are pre-trained.

After the DNN-ELPM is pre-trained, the fine-tuning operation is
performed to improve the performance of model fitting. Firstly,



Fig. 3. The pre-training processes of DNN-based effective life prediction model.
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relations between the output layer and the nth hidden layer are
established by Eq. (10):

y*m ¼ f nþ1
�
wnþ1hn

m þbnþ1
�

(10)

where y* ¼ fy*mg
M
m¼1 is the actual output data of the DNN-ELPM;

hn ¼ fhn
mg

M
m¼1 is the nth hidden layer data; wnþ1 and bnþ1 are

weight matrix and bias vector from the nth hidden layer to the
output layer, respectively; f nþ1ð $Þ is the activation function of the
nth hidden layer to the output layer.

Secondly, the error function of the DNN-ELPM is constructed by
Eq. (11):

fDNNðy; y*Þ¼
1
M

XM
i¼1

��ym � y*m
��2 (11)

where y ¼ fymgMm¼1 is the expected output of the DNN-ELPM. By
using the back-propagation process (Jia et al., 2016), the error
function of the DNN-ELPM is minimized, to obtain the effective life
prediction model of key components under a specific operating
condition.

After training the model, when transferring operating state
parameters and operating environment parameters into the DNN-
ELPM, the effective life of key components under a specific oper-
ating condition can be calculated and predicted.

Step 3: Predicting the REL of key components under different
operating conditions.

As previously mentioned, the operating conditions of key
components are dynamic changing in the practical production and
operation processes. Therefore, the predicted value of effective life
for key components under specific operating conditions cannot
accurately reflect their actual REL. Therefore, Eq. (6) is used to
provide a comprehensive evaluation of the relative lifespan loss
rate of the key components under different operating conditions.

Given an empirical threshold r of relative lifespan loss rate,
when the calculated h is much less than threshold r, it indicates
that the key components still have a long REL, and it is not neces-
sary to predict the REL.When h reaches the empirical threshold r, it
indicates that the key components have reached the critical point of
their REL. Therefore, it is necessary to predict the REL and to
implement preventive maintenance activities according to the
predicted results.

When the calculated relative life loss rate h of key components
reaches the empirical threshold r, the REL RL can be predicted by
Eq. (12):

RL ¼ að1� hÞ
X

εiTi þ bð1� hÞT
a>0; b>0;aþ b ¼ 1

εi >0;
X

εi ¼ 1
(12)

Here, when the REL of key components is sensitive to the
operating condition, the a might be bigger. On the contrary, if the
key components are stable enough, the expectancy-value of
remaining lifespan based on historical data should be taken into
more consideration, so b might be bigger.
5. Case study

The proposed mode was tested in a case study of an industrial
partner company. Themain objectives of the case studywere to test
how the equipment maintenance approach could be changed by
the proposed operation mode, as well as what improvements were
made by using active preventive maintenance.

In this section, firstly, an overview of the case company was
provided. Then, the configuration methods of the smart machine
and the data collection methods of the case study were introduced.
Thirdly, the prediction processes of the REL of cutting tools for CNC
machine were elaborated. Finally, the advantages of the proposed
novel PSS operation mode and the active preventive maintenance
approach of complex equipment were analysed and discussed.
5.1. Overview of the case company

The case company is a high-tech enterprise in China, which
focuses on the research and development (R&D), manufacturing,
sales and service support of CNC machines. The company has
developed more than 300 types of high-precision CNC machines.
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These machines are used by over 100 key customers to process
nearly 200 kinds of precision and high-end products, such as pre-
cision moulds, precision electrodes and specular machining.
Because of the case company’s CNC machines are mainly used in
the precision processing industry, it is of utmost importance for the
company to prevent faults and to ensure the machining precision
and processing quality.

In the past, all CNC machines were placed in a different
geographical area and used by a specific customer. Restrained by
the development of information and communication technologies,
the operational data of the different machines and different cus-
tomers in diverse conditions and areas could not be acquired
accurately and completely. As a result, the accuracy and efficiency
of fault diagnosis and lifespan prediction for machines based on
incomplete and inaccurate operational data under a specific con-
dition were lower, which have directly affected the service life of
machines and their production efficiency. Meanwhile, the hidden
factors that affect the machine fault and service life are difficult to
be discovered, which makes prevention and prediction of faults
extremely difficult to realize. They also cause reductions in pro-
cessing precision and increases in production costs.

Therefore, it is important to determine how to improve the ac-
curacy and efficiency of fault diagnosis and lifespan prediction for
CNC machines, to enhance the processing precision, which was the
main challenge the case company faced for a long period. Recently,
with the digitization of the industry and the advancement of in-
formation technologies, the case company sought a new way to
achieve the potential of sensing and applying the operational data
of different machines and different customers in different condi-
tions for fault diagnosis and lifespan prediction, and therefore,
tested the novel operation mode according to Section 3.
5.2. Configuration of the smart CNC machine and data sources

For simplicity of understanding but without losing generality of
principle, a certain type of CNC machines (named VT and used
throughout this section) were selected to illustrate the solution of
configuring smart machines and collecting operational data that
were adopted by the case company. For example, multiple types of
smart sensors are used to configure the smart VT machines and to
collect the multi-source operational data and environmental data
of different customers in different operational conditions. Due to
the limited space, parts of the configuration information of the
smart sensors for VT machines are shown in Table 3.

The gateway of local area network adopted in the production
field can support multiple types of communication interfaces, such
as Registered Jack 45(RJ45), Recommended Standard 232 (RS-232)
and wireless, thus the communication among heterogeneous
Table 3
Example of the configuration information of the smart sensors for VT machines.

Sensor types Locations

Refractometer Cutting fluid cooling tank
Liquid level sensor Cutting fluid cooling tank

Machine lubrication pump
Temperature sensor Spindle end

Cutting fluid cooling tank
Temperature and humidity sensor Around the CNC machine
Humidity sensor The compressed air inlet of the machine
Displacement sensor Spindle bearing
Acceleration sensor Around the CNC machine
Photoelectric touch probe Spindle
Laser displacement sensor WIP
Pressure sensor The compressed air outlet of machine
Machine numerical control (NC) system e
sensors can be realized. To achieve the data collection, uploading
and handling, the smart sensors were connected to the NC system
of VT machines, and were incorporated into a data collection and
communication system based on Microsoft Structured Query Lan-
guage (MS-SQL) Server. As a result, the data gathered by MS-SQL
Server can be added to a Distributed Numerical Control (DNC)
system, and then the visual information (e.g. processing records,
machine alarms, tool wear, etc.) can be provided for operators or
managers.

The proposed operation mode described in Section 3 was
implemented in the case company. That is, these VT machines were
leased and shared in the pre-defined location of the case company
by multiple customers, such as 3C small hardware industry, preci-
sion mode, precision electrodes, hard-cutting materials and medi-
cal industry. Therefore, the operation state data and operation
environment data of different machines and different customers in
different processing conditions were acquired accurately and
timely. These multi-source data were useful for the analyses and
prediction of the REL of key components for the VT machine.
5.3. Prediction of the REL of cutting tool for CNC machine

In this section, the method of prediction of the REL was verified
by using the cutting tools of VT machine. Through the typical
milling processes, the empirical estimation value of REL was
compared with the calculated value obtained by the proposed
method in this paper.

During the machining processes, different processing materials
and machining parameters and cutting tool materials were used. In
this case study, the specific information and parameters for the REL
prediction of cutting tools are shown in Table 4. The flat-end cutters
(FC-1) with tungsten carbide were used in the milling processes.
The machined material was 6063-T6 aluminium alloy. Three
different groups of machining parameters (MP) were tested.
Therefore, the data used to predict the REL were collected from
these different machining processes. It is important to note that
machine tool vibration has a direct effect on tool wear, durability,
machining accuracy and quality of the machined surfaces. When
the calculation of REL of cutting tools, the spindle vibration signal
collected from Section 5.2 was regarded as the main factor, and as
an essential input of the DNN-ELPM.

According to the method proposed in Section 4.4, the processes
of prediction of REL for FC-1 cutting tools are carried as follows.

Firstly, the data of 6063-T6 material machined by FC-1 cutting
tool were extracted from the MS-SQL Server system of the case
company. These data including the vibration data of the FC-1 cut-
ting tool under the specific operating condition of MP1, MP2 and
MP3, and the actual lifespan of FC-1 (that statistic by the case
Measuring parameters

The concentration of cutting fluid
Cutting fluid level
Lubricant oil level
Spindle temperature
Spindle coolant temperature
Temperature and humidity of machine surrounding
The humidity of compressed air
Spindle vibration
The vibration of the machine surrounding
Geometric errors of work-in-process (WIP)
WIP quality
The pressure of compressed air for changing the cutters
Spindle motor current and load torque, spindle speed, feed speed, cutting depth



Table 4
Parameters and information used for the REL prediction of cutting tools.

MP number Spindle speed (r/min) Feed speed (m/min) Cutting depth (mm) Tool type Tool material Machined material Processing type

MP1 8000 5 0.4 Flat-end cutter (FC-1) Tungsten carbide 6063-T6 aluminium alloy Milling process
MP2 9000 5 0.1
MP3 9000 5 0.2
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company). A total of 120 samples of FC-1 under a specific operating
condition were extracted to establish the effective life prediction
model of FC-1. At the same time, to predict the REL of the FC-1
cutting tool under different operating conditions, the data of five
FC-1 cutting tools, under the three operating conditions (i.e. MP1,
MP2 and MP3) were documented. The data included: the service
time, vibration data, and actual lifespan of each cutting tool under
the specified operating conditions.

Secondly, a 1-input 1-output 2-hidden 4-layer DNN was
designed to predict the effective life of FC-1 under a specific
operating condition. The input layer parameters of the DNN were
the spindle speed, feed speed, cutting depth and vibration signals
under specific operating conditions (MP1, MP2 and MP3), and the
output layer parameters were the actual lifespan of FC-1 under the
corresponding operating conditions. In particular, the first 1200
data points in the frequency domain of the vibration signal were
selected as the input parameters of the DNN. Therefore, the input
layer of the DNN had a total of 1203 neuron nodes. Based on
experience settings, the structure of DNN-ELPM is designed as
[1203, 300, 64, 1], which means the established network contains
1-input layer (1203 neurons), 2-hidden layer (300 and 64 neurons,
respectively) and 1-output layer (1 neuron). These input parame-
ters were randomly divided into training data, test data and vali-
dation data, amongwhich training data accounted for 70%, test data
and validation data accounted for 15% respectively. In the pre-
training process, two AEs are used to initialize the weights and
thresholds of hidden layers, and the maximum iteration number of
AE is set as 100. In the fine-tuning process, the maximum iteration
number of the whole DNN-ELPM is set as 300. As a result of these
settings, the effective life prediction model of FC-1 under a specific
operating conditionwas established, which can provide a reference
for the prediction of REL of the five FC-1 cutting tools. The tests
were performed on aworkstation (Intel(R) Core (TM) i7-7700KCPU
@ 4.20 GHz) with 32G of RAM, Windows 10 Enterprise Edition
operation system with 64-bit, and Matlab 2017a was used to train
the DNN. In this case study, the computational time of DNN model
mainly includes three parts: 1) the parameters mapping time from
the input layer to the first hidden layer based on AE1 (45.33s); 2) the
parameters mapping time from the first hidden layer to the second
hidden layer based on AE2 (2.38s); and 3) the fine-tuning time for
the whole DNN-ELPM (9.22s). Therefore, the total time for the
establishment of DNN-ELPM is 56.93s. Compared with the DNN-
ELPM training process, the calculation time of the final REL based
on Eq. (12) could be nearly ignored. This is because of the main
parameters (i.e. h and Ti) of REL prediction for cutting tools that in
Eq. (12) have already been obtained through the DNN model when
the final REL prediction is conducted.

Thirdly, the empirical threshold of relative lifespan loss rater
was set to 0.7, and the weights a and b were set to 0.6 and 0.4
respectively. The prediction value of effective life for each FC-1
cutting tool under a specific operating condition (MP1, MP2 and
MP3) was obtained from the second step. Using the cutting tool and
machined material and machining parameter designated in this
case study, while the relative lifespan loss rate reached the pre-
defined threshold (i.e. 0.7), the REL prediction is triggered. At the
moment of triggering the REL prediction, the relative lifespan loss
rate of 5 FC-1 cutting tools can be calculated based on the service
time of them under the above stated three operating conditions.
The actual REL of the 5 FC-1 cutting tools can be expressed by the
differences between the actual lifespans of each FC-1 obtained from
the case company and the service time of the tools when predicting
effective life. Comparisons between the predicted and actual REL of
the 5 FC-1 cutting tools are shown in Fig. 4. In this case study, the
REL is expressed by the quantity unit “pieces (PCS)”, where 1-PCS
means that the FC-1 cutting tool can be used to machine one
6063-T6 aluminium alloy product. It can be seen from Fig. 4 that the
predicted REL of the 5 FC-1 cutting tools was less than the actual
value. The results have guidance value for maintenance personnel
and on-site operation personnel for making timely repairs and re-
grinding and replacing the tools, which is helpful to avoid the
WIP damaging when the cutting tools reach end-of-their-lifespan.

5.4. Analysis and discussions

In this part, the historical data and experiment data of VT
maintenance in the case company were used to test the validity of
the proposed method, and the findings were also discussed.

The safe range for REL of five FC-1 cutting tools released by the
REL predicted value is analysed. The deviations between the pre-
dicted and actual REL of the five FC-1 cutting tools is calculated
(seen in Table 5 and Table 6).

As shown in Table 5, for the five FC-1 cutting tools, the
maximum deviation between the predicted and actual REL was
9.95%, and theminimum deviationwas 6.6%. According to the semi-
structured interviews with managers of the case company, in the
actual production processes, the safe range of deviation for the
cutting tools is usually pre-set to be 10%. Therefore, the deviations
of REL for all the five FC-1 cutting tools are within the allowable and
safe range. The results showed that the REL predicted by the pro-
posed method did not result in a conservative or excessive use of
the tools. On the one hand, the problems of low tool utilization and
production cost increase caused by the conservative estimation of
REL can be avoided. On the other hand, the problems of high cutting
temperatures, low machining accuracy, tool breakage and spindle
shaft break caused by the excessive use of the tools can also be
Fig. 4. Comparison of the predicted and actual REL of the 5 FC-1 cutting tools.



Table 5
Deviations between the predicted and actual REL of the five FC-1 cutting tools.

Number of FC-1 cutting tool 1 2 3 4 5

Deviations (%) 9.95 7.40 6.60 8.42 8.74
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avoided by using the proposed approach.
Similarly, through the integrated and comprehensive analysis of

the deviations between the predicted and actual REL of the five FC-
1 cutting tools, the mean deviation (8.22%) and the standard de-
viation (1.15%) are both at a lower level (as seen in Table 6). This
indicates that the proposed method has high robustness in pre-
dicting the REL of cutting tools under different operating condi-
tions. Therefore, in the complex operating and machining
conditions (e.g. the above-mentioned different processing mate-
rials, machining parameters, cutting tool materials, etc.), the pro-
posed method can predict the REL of components accurately and
effectively.

The case study provides strong empirical evidence that the
proposed method is valid and feasible, which indicates that it has
the potential to be applied in industry for equipment preventive
maintenance. Compared with other research (Cheng et al., 2020;
Wan et al., 2017; X. Wang et al., 2019; Xia et al., 2017; Zhu et al.,
2012), the major difference is the novel leasing/sharing mode
together with the possibility of achieving more comprehensive
data collection and the advantage of providing higher quality ser-
vices for their customers. The proposed novel PSS operation mode
makes it possible to track and access the operational state data of
non-key components (namely auxiliary devices or accessories). For
example, geometric errors of WIP, concentration and the fluid level
of cutting fluid, the temperature of spindle coolant, the humidity of
compressed air, temperature and humidity and vibration of the
machining environment, and so on. These data create effective
means to inter-connect equipment, end-users and ethics. For
example, the collected data can be analysed to better control and
management of machine tools, the product produced is of better
quality, and therefore will work better for the user of the ‘turned’
product. This would be a potential and an illustrative ethical
parameter.

The proposed active preventive maintenance approach along
with the collected real-time and multi-source operations status
data (e.g. different equipment and different users in different
conditions) allows the PSS providers to find more hidden, common
fault features in a shorter time. This will help PSS providers to
reduce resource waste and improve production efficiency. There-
fore, the operation mode and data and active preventive mainte-
nance approach are three pillars that are critically important to
exploit the potential of the operations status data for complex
equipment. These three elements provide insights to PSS providers
to develop and implement sustainable business models in line with
the evolving ethical principles of enterprise social responsibility.
For instance, within the proposed operation mode, the operational
data of different equipment and diverse users in varied conditions
can be collected to perform active preventive maintenance at the
proper time. As a result, worker’s health and safety risks caused by
a sudden equipment failure may be reduced and avoid, which is
consistent with the ethical dimensions of the CE.

According to the semi-structured interviews with the manager
Table 6
Deviation analysis of the predicted and actual REL of the five FC-1 cutting tools.

Maximum deviation (%) Minimum deviation (%)

9.95 6.60
of the case company, in the past, even though all MP of the CNC
machines were set in an appropriate range, the final turned product
was not always of the expected quality or precision. By applying the
novel operationmode andmethodwith real-time andmulti-source
data, more hidden fault features were pre-emptively found and
detected, thereby active preventive maintenance can be performed
to eliminate the faults earlier and to ensure the fluency of pro-
duction processes. This can move the PSS providers from planned
corrective maintenance to proactive and smart maintenance
planning (Matyas et al., 2017), and can reduce the PSS providers’
maintenance costs and customers’ use costs while substantially
reducing material’s and production time wastage.

Although a substantial amount of cost and effort is needed to
invest in the novel operation mode, the benefits outweigh the in-
vestment. It should also be noted that the collected real-time and
multi-source operations status data can bring additional benefits
for the PSS providers. For example, the results of statistical analysis
of frequent faults for different machine tools in different opera-
tional conditions can provide new ideas and insights for research
and development of the next generation of the machine tool.
Moreover, other potential benefits of the novel PSS operation mode
such as the usage rate of CNCmachines can be increased because of
the shared usage. Therefore, resource efficiency can be achieved by
implementing the CP strategy while improving worker health and
safety, and by ethically and responsibly ensuring that the turned
products are uniformly top quality. As a result, catalysing the PSS
providers can make progress in transitioning their company’s
business to performing corporately, socially and environmentally
responsibly. At the same time, the PSS providers will improve their
competitive advantage by expanding their visions and plans to
continue to innovate in their PSS so their products are designed to
be re-used as inputs to CE in the context of the 17 Sustainable
Development Goals and in co-working to achieve the targets of the
Paris Climate Change Accords.

The major disadvantage of the proposed operation mode is the
risk of a customer’s sensitive information (e.g. what products are
produced by the machine tools) being exposed to the PSS provider.
This is currently a limitation to the wide application of the pro-
posed operation mode, but this concern can be resolved in the
future. For example, the encrypted data protocol can be used in the
PSS delivery processes to protect customer privacy. At the moment,
as stated at the beginning of Section 5.1, most of the customers have
long-term cooperation with the case company and highly trust
them, therefore, this concern is minor compared to the benefits
they can gain.
6. Conclusions

Many manufacturing companies have transformed their busi-
nesses towards PSS business models, to integrate product devel-
opment with relevant operation and maintenance services as part
of CE and which helps to accelerate the societal transition to
equitable, sustainable, livable, post-fossil carbon societies. Thereby
they are increasingly working to help to fulfil the Paris Climate
Change Accords and to implement the 17 Sustainable development
goals. However, with the permeation and application of the smart
enabling technologies in all aspects of the manufacturing industry,
the PSS providers are facing many challenges. For example, how to
Mean deviation (%) Standard deviation (%)

8.22 1.15
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collect and analyse the operational data of different equipment and
users in different conditions in a timely fashion, to perform main-
tenance pre-emptively and to reduce resource consumption during
maintenance procedures.

In order to address the challenges, in this paper, an active pre-
dictive maintenance approach for complex equipment based on a
novel PSS operation mode was proposed. The main purposes were:
1) to integrate the PSS delivery processes with associated operation
and maintenance services and to create the capability for PSS
providers to better control andmanagement of their products; 2) to
create means to inter-connect equipment end-users and ethics to
reduce natural resource consumption and to improve equipment
utilization by using leasing and sharing mode.

The proposed approach was motivated by the massive and
multi-source operational data of complex equipment and employs
DNN to train a model for prediction of the REL of key components.
As a result, the health status of equipment was monitored in a real-
time. A case study from a leading CNC machine provider was used
to verify the feasibility and effectiveness of the proposed solution.
Through the typical milling process, the empirical estimation value
of REL for cutting tools was compared with the predicted value
obtained by the proposed method. Results from the comparisons
shown the superiority of the proposed approach. The main
contribution lies in scientific and practical knowledge for how the
novel PSS operation mode can provide value-added services for
equipment users and provide opportunities for PSS providers to
explore and develop more sustainable business models aligned
with the evolving ethical principles of enterprise social re-
sponsibility. The unique contributions, implications and limitations
of this paper were summarized and elaborated as follows.

6.1. Unique contributions

The deployment of a more ethical and sustainable business
model using Industry 4.0 to achieve CP and CE remains to be
difficult for industrial practitioners and managers (Nascimento
et al., 2019). Given this challenge, the purpose of this paper is to
explore how emerging technologies from Industry 4.0 can be in-
tegratedwith the PSS paradigm to establish a novel operationmode
that can help enterprises and governments carry out more efficient
and sustainable production and consumption. The proposition is
proposed from the perspective of maintenance service for complex
industrial equipment. Consequently, supporting the implementa-
tion of CP and CE, and accelerating the transition to more ethical
and sustainable societies. The following contributions were made
by the authors of this paper:

Firstly, by combining the key technologies of Industry 4.0 with
the PSS paradigm, a novel leasing/sharing mode for complex in-
dustrial equipment was proposed. Under the operation mode, all
leased/shared equipment is independently controlled and
managed by the OEM in the premises they provide and in a
centralized manner. Therefore, the operational data of different
equipment and multiple users in varied conditions can be collected
and analysed by the OEM. As a result, more professional operation
and maintenance services can be provided for the end-users.
Moreover, the professional production operators and mainte-
nance staffs of the OEM can also be shared to reduce the failure rate
and to improve the product quality and resource utilization. These
advantages can help the OEM with the construction of corporate
social responsibility and the integration of CP, CE and business
ethics.

Secondly, from the perspective of efficient usage of complex
equipment under the proposed leasing/sharing operation mode,
conceptual architecture and solution for active preventive main-
tenance were developed. In contrast to the existing approaches, the
novelty of the proposed solution for active preventive maintenance
is the integration of these approaches based on historical data
combined with real-time operational data as well as design pa-
rameters of key components. This integration is important for the
novelty of the solution, the REL and faults of key components are
predicted more precisely, and preventive maintenance measures
are planned pre-emptively. As a result, resources and energy con-
sumption can be reduced while improving worker health and
safety. This is beneficial to achieve a balance and harmony among
environment, society and socio-ethical issues.

6.2. Implications

The PSS has the potential to facilitate sustainable production
and consumption and to support a transition towards a CP and CE.
For this study, the research implications could be illustrated from
the following perspectives.

Firstly, it was found that the utilization rate of equipment can be
improved and the circulation of equipment can be reduced by using
the proposed leasing or sharing mode. Thus, it can help practi-
tioners minimize resource consumption and negative environ-
mental impacts. Furthermore, it can promote the resource
integration of the entire manufacturing industry and can reduce
the threat to ecosystems. Consequently, numerous opportunities
for PSS providers to develop sustainable business models, to carry
out CP and CE strategies, and to extend ethical principles of en-
terprise social responsibility can be provided.

Secondly, under the proposed PSS operation mode, all equip-
ment is leased/shared in the premises the OEM provided, and
exclusive controlled and managed by the OEM. This is the biggest
difference between traditional PSS. The small and medium-sized
enterprises (SMEs) can significantly reduce equipment purchase
costs and plant building costs by leasing/sharing mode. Meanwhile,
due to the SMEs do not have to consider the problem of idle
equipment disposal when their production and finance fall into
crisis, the operational risk can be reduced. Furthermore, enter-
prises’ normal production can be ensured when the orders changed
dynamically and reached a peak, yet without the need to purchase
additional equipment. Therefore, rational and efficient usage of
social resources can be achieved. This can promote the imple-
mentation of a more efficient CP practice and the development of a
more ethical and sustainable business.

Thirdly, since the costs for leasing/sharing equipment is much
lower than owning one (especially for high-value and high-end
production machines), the proposed new PSS mode reduces the
capital requirements of practitioners’ entrepreneurship. Therefore,
more entrepreneurs can enjoy the benefits of the leasing or sharing
mode, thus driving the enthusiasm of entrepreneurs. As a result,
the implementation of the proposed PSS operation mode enables
the development of local business networks that generate more
jobs as well as improve economic performance. The operation
mode also promotes a culture of CP and CE and motivates the
transition to more ethical and sustainable societies through the use
of Industry 4.0 paradigm.

6.3. Limitations

The limitations of this paper are summarized as follows. Firstly,
in the case study, only one machined material and processing type
(see Table 4) were used to test the effectiveness of the proposed
approach. To strengthen the robustness and accuracy of the pro-
posed approach in REL prediction, the machining process accom-
panied by different processing materials and processing types as
well as processing parameters should be considered and tested
comprehensively. Secondly, the data security of the customers was
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not considered. In the proposed operation mode, the customers’
sensitive information may be leaked to the PSS providers. To solve
this problem, new technology such as Blockchain (Bechini et al.,
2008; Feng et al., 2020; Hawlitschek et al., 2018) should be used
to establish a trust mechanism between the customers and the PSS
providers.

Future works should be focused on the following three aspects.
Firstly, with the continuous accumulation of equipment operational
data, more advanced models and algorithms should be taken into
consideration to improve the accuracy of fault features for detec-
tion and lifespan predicting. Secondly, the mechanisms and ap-
proaches for dynamic allocation of production resources within the
novel PSS operation mode should be investigated to maximize the
utilization rate of these resources (as stated in Section 3) and to
reduce the PSS providers’ production and operation cost. Thirdly,
under the proposed PSS operation mode, new strategies and
propositions for supporting enterprises and society to cope with
the negative effects of workers’ unemployment caused by techno-
logical innovation and improvement should be taken into account.
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