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Abstract

The study evaluates nonlinear price transmission mechanisms between clean energy stock and
crude oil price in levels, mean, and error variances. We propose a novel way of combining a two-
regime threshold vector error correction with the DCC-GARCH model to demonstrate a statistical
coherency. The study advances the literature by examining the long-and short-term dynamics of
these assets in their levels where the information of nonstationarity in the first moment of these
assets is preserved, which generally disappears or becomes a random walk process in the return
series. The combined model is then applied to derive a regime dependent dynamic hedging
strategy, which has been complemented by a wavelet-based hedging strategy. The data spans from
2nd April 2004 to 10th July 2020 is divided into sub-periods to incorporate the financial crisis and
ongoing COVID pandemic. Our findings suggest a nonlinear regime-dependent long-term
connectedness among the assets in the first and second moments. The study affirms that the price
transmission path between the two asset classes is nonlinear. The research indicates that the clean
energy index emerges as the dominant influencer on the crude oil price over the post-crisis
subsample. A nonparametric nonlinear causality further validates the theoretical rationale of an
integrated model. While examining the impact of several control variables on the relationship
between these assets, we find that policy uncertainty is an important thread which further
demonstrates the prominence of clean energy stocks. Our findings are in accordance with the
global focus of divestment in the non-fossil fuel energy sector. This study differs from previous
studies in its apt application of statistical modeling techniques on the theoretical and empirical
ground
integrated model has the potential to fetch higher returns compared to commonly used volatility-
based models.
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Hedging Strategy
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1. Introduction

Is the clean energy stock going to be the critical economic indicator instead of oil? With

the downfall in crude oil prices in the aftermath of the 2008 financial crisis and better awareness

about the disastrous environmental impact of fossil fuels, the global focus has shifted towards

clean energy sources (Lauri et al., 2014). The clean energy sector has seen a tremendous thrust of

investment in the past decade. Two-thirds of the global energy investment is expected to absorb

only by renewables in 2040 (IEA, 2018). The sector has witnessed investments of $279.8 billion

as of 2017. The cumulative investments in the sector have increased to $2.9 trillion since 2004

(McCrone et al., 2018). The impulse is equally reflected in the financial market performance of

clean energy stocks, which has received grand attention from global investors, practitioners, and

policymakers in recent years (Ahmad, 2017; Ahmad et al., 2018; Elie et al., 2019; Rezec and

Scholtens, 2017; Uddin et al., 2019). The Wilder Hill Clean Energy Index, one of the leading

renewable energy stock indexes, had attained global attention when it fetched a recorded annual

return of 35% in 2007, exceeding the benchmark indices of NASDAQ significantly. Returns have

also been higher than the benchmark indices in the years 2013 and 2019 (Invesco, n.d.). Oil price,

on the other hand, has exhibited a significant plunge in the year 2014 (-49.73%), 2015 (-32.55%)

after attaining a historic low-price post-2008. It has followed the recovery of 52.41% in 2016 and

another 17.44% in the year 2017. Later on, it has again slumped by 24.22% in 2018 and by more

than 40% during the period of the pandemic in 2020 (Figure 1). Because of this, it is quite realistic

to assume that the dynamics between clean energy index and crude oil are complex but transient,

which passes through different market conditions, causing a persistent upturn or downturn in the

underlying risk-return relationship. And the clean energy stock price may soon become the leading

indicator representing the health of the global economy.



The literature, so far, has mostly advocated the dominance of crude oil over clean energy

assets (Broadstock et al., 2012; Dutta, 2018; Dutta et al., 2020, 2018; Elie et al., 2019; Henriques

and Sadorsky, 2008; Kang et al., 2017; Kocaarslan and Soytas, 2019a, 2019b; Kumar et al., 2012;

Managi and Okimoto, 2013; Mei et al., 2018; Mishra et al., 2019; Pal and Mitra, 2017; Pandey and

Vipul, 2018; Reboredo, 2015; Sadorsky, 2012; Uddin et al., 2019; Wen et al., 2014; Yahya et al.,

2020). Recently, some studies have highlighted weak  (Elie et al., 2019; Nasreen et al., 2020; Ripsy

Bondia et al., 2016) or no association (Ferrer et al., 2018) between crude oil and clean energy stock

price. Lundgren et al. (2018) report that oil is not the key influencer in the financial market.

The majority of previous researches have deployed variants of multivariate GARCH

models (Ahmad, 2017; Ahmad et al., 2018; Broadstock et al., 2012; Dutta, 2017; Dutta et al., 2020;

Elie et al., 2019; Reboredo, 2015; Sadorsky, 2012; Wen et al., 2014), cross-quantilograms (Uddin

et al., 2019), or time-frequency spillover (Ferrer et al., 2018) to study the relationship of crude oil

and clean energy price. A few recent studies have used a mix of parametric and nonparametric

approaches (Ferrer et al., 2018; Lundgren et al., 2018; Nasreen et al., 2020; Zhang et al., 2020).

The application of different linear and nonlinear cointegration techniques is also not rare (Ripsy

Bondia et al., 2016; Henriques and Sadorsky, 2008; Kocaarslan and Soytas, 2019b; Kumar et al.,

2012; Managi and Okimoto, 2013; Reboredo et al., 2017). While the latter group of researchers

has focused on modelling the nonstationary assets in levels, thereby ignoring their heteroscedastic

properties of error variances, the former has extensively dealt with the return and volatility aspects

after making the assets stationary, disregarding the cointegration property. In this study, we adopt

an integrated modelling approach where we preserve the information of nonstationarity and

heteroscedasticity in examining the price transmission mechanism of crude oil and clean energy



stock price. To the best of our knowledge, such an integrated modelling approach is nonexistent

and makes novel additions to the literature. Our research contributes to the literature in many ways.

First, the originality of this study is that it proposes a modelling technique where the first

and second moments information of the assets are kept intact in exploring their mean and volatility

transmission of clean energy stock price and the price of crude oil through an integrated research

framework combining a regime-changing Threshold vector error correction model (hereafter:

TVECM) (Hansen and Seo, 2002) with dynamic conditional correlation (DCC-GARCH)

procedure of Engle (2002) together. The novelty of this modelling approach originates to some of

the seminal works by (Gregory and Hansen, 1996; Hamilton, 1994; Hatemi-J, 2008) that

recommended that investigating the non-linearity in mean returns, ignoring the impact of the

spurious relationship, or the existence of structural breaks may lead to false inferences. From the

theoretical standpoint, our study advances the literature by examining the long- and short-term

dynamics of these assets in their levels where the information of the first moment of these assets

is preserved and added to their second moment or heteroscedastic variance. The nonstationarity

property often disappears after the first difference of the financial assets because they follow a

random walk process (Fama, 1970). This means the and bears

no systematic information which can be modelled for. So, the first-order or mean modelling of

assets is statistically meaningful if these assets are examined in levels as the information of

Earlier studies have remained silent and oblivious

about these gaps. Our approach captures the dynamics of these assets in levels and their

heteroscedastic variances by not working with the series, which are white noise to start with.

Second, we add to the literature by deploying a regime-based modelling framework in level

and volatility with nonstationary assets. The rationale for adopting a regime-based approach can



be explained by the continuous occurrence of upswing and downswing dynamics of the underlying

variables. The price transmission mechanism between any two instruments never follows a linear

or constant path due to changing market conditions. Thus, a chronological evolution of clean

energy stock and crude oil prices must have witnessed different regimes or market conditions. The

TVECM (Hansen and Seo, 2002; Seo, 2011, 2007) can aptly encapsulate two (three) regime-driven

dynamics of assets that are nonstationary at levels. This feature differentiates a two (three) regime-

TVECM from other parametric or nonparametric class of models, which can analyze the assets at

various market states with only asset returns. A regime-switching dynamics is an endogenously

determined phenomenon in a TVECM. The regime definition  depend

on the estimated threshold parameter, which determines the distribution of regimes (Hansen and

Seo, 2002; Seo, 2011, 2007). One of the limitations of this model is that it cannot estimate the

volatility transmission of two asset classes for separate market conditions. We address this gap by

applying the DCC-GARCH (Engle, 2002) TVECM residuals to investigate the regime-dependent

level and volatility transmission of prices.

Third, we have conducted a rigorous validation process and robustness check for the

proposed model. The need for the integrated modelling approach (TVECM-DCC-GARCH) with

nonstationary level variables is validated using a nonparametric causality of Diks and Panchenko

(D&P) (2006). The D&P causality is tested on filtered residuals sequentially for i) VAR filtered

residuals, ii) TVECM filtered residuals, iii) MEAN plus DCC-GARCH filtered residuals, and iv)

TVECM-DCC-GARCH filtered residuals. This approach helps to reassess the information

richness of each model by looking into the causal relationship between the assets at every stage.

For example, if the null of no causal link between crude oil price and clean energy residuals

obtained from the VAR estimation is rejected, then we could possibly infer that the residual is not



white noise. This implies that the VAR model applied has not been able to arrest embedded

information in the underlying variables completely. Similar conclusions hold true if the null of no

causality gets rejected at other stages. We further tested the effectiveness of our proposed model

empirically in a trading strategy.  We also perform the diagnostic tests by estimating wavelet-

based portfolio weights and hedge ratios for the underlying assets to measure robustness checks.

Fourth, we have thoroughly examined the consistency of the regime driven relationship

between crude oil price and clean energy stock price by adding many facets to the empirical

analysis. We have divided the weekly data of Wilder Hill Clean Energy Index and Brent crude oil

(BRENT) spanning from 2nd April 2004 to 10th July 2020 into seven different subperiods, which

incorporate the effects of the 2008 financial crisis and ongoing COVID pandemic period. To

examine the strength of the linkage between these two assets, we have checked the link of clean energy

stock price with other variants of crude oil price like WTI (West Texas Intermediate), its futures (1,3,6,9,12

months), and S&P oil index using the TVECM-DCC-GARCH. Additionally, the nexus between these assets

are modelled in a multivariate framework to test if the link withstands the impact of control variables like

carbon price, policy uncertainty, and S&P volatility index in different subsample periods. The risk strategies

are also examined for oil price with clean energy stock price, wherever appropriate.

This study offers some unique outcomes carrying practical implications for traders and

market practitioners. This research establishes that the two nonstationary series, crude oil price,

and clean energy stock price, share a two-regime nonlinear cointegrating relationship with a

threshold effect. Our findings indicate a weak cointegration link before the financial crisis of 2008

between these assets, which become significantly stronger over the post-crisis subsample. The

threshold cointegration link, however, breaks when the data period encompasses the COVID

TVECM-DCC-GARCH is applied to Bollinger bands (Bollinger, 2001; Ramlall, 2016) trading strategy.



pandemic period. A similar finding is also uncovered when the threshold cointegration is examined

for financial crisis days as well.

The causal dynamics from the TVECM indicates the dominance of crude oil over the clean

energy stock price in the pre-crisis period. The dynamics reverse over the post-crisis period, where

the clean energy stock emerges as a strong driver of crude oil price in a normal regime. Our

findings deviate from the majority of earlier studies that advocate that the oil price governs over

clean energy. However, the finding of the crude oil driving the clean energy stock is a rare

phenomenon and observed only in extreme regimes  synchronizes with the research outcomes of

(Dutta et al., 2020; Uddin et al., 2019; Zhang et al., 2020). Our study does differ from Ferrer et al.

(2018) and Bouri et al. (2019), who showed a decoupling or a weak link between clean energy and

oil price returns. This research extends the work of Lundgren et al. (2018) to some extent, who

suggest clean energy stock is one of the net transmitters

In examining the relationship in a multivariate framework, policy uncertainty and S&P

volatility index establish interesting characteristics in honing the connection between clean energy

and crude oil price. We find that policy uncertainty and S&P volatility index (VIX) share a two-

regime threshold cointegration with BRENT and clean energy stock price for the entire sample. In

the post-financial crisis period, excluding the COVID pandemic, policy uncertainty exhibits a

threshold cointegration link with BRENT, WTI, and clean energy stock price. These findings are

consistent with Lundgren et al. (2018). Furthermore, the presence of policy uncertainty and the

VIX has not altered the findings of clean energy stock price, becoming the key driver for the crude

price since the onset of the financial crisis.

 These outcomes are validated for WTI, its futures, and the S&P oil index with clean energy stock price. While WTI
and its futures have shown similar results as BRENT crude oil price for all subperiods, the S&P oil index has shown
similar findings as BRENT only for pre-financial crisis days.



The DCC-GARCH analysis of TVECM residuals recommends that the volatility spillover

among assets is statistically significant. The volatility association between crude oil and clean

energy emerges to be more dynamic in the post-crisis days in a normal regime. The dynamic

conditional correlation shows a wide range of variation from -0.05 to 0.4 as compared to the pre-

crisis era, which has shown a weak association in volatility between these two assets varying from

-0.1 to 0.1. The correlation, however, has stayed less than 0.5 in all cases suggesting CEI, a good

instrument for hedging although weakened in comparison to the pre-crisis period. This finding is

in line with Sadorsky (2012), who also argues that although clean energy and oil markets are

positively correlated, it is still possible that investors holding assets in these sectors would receive

portfolio diversification benefits. The obtained portfolio weights and hedge ratios affirm this

association, indicating a significant difference in hedging effectiveness over the pre-and post-crisis

period.

Our validation exercise has offered results in line with our expectations. The sequential

D&P causality checks of filtered residuals for the TVECM-DCC-GARCH model has accurately

justified the need for our integrated modelling approach. The trading strategy results also

demonstrate that TVECM-DCC-GARCH outperforms DCC-GARCH in CAGR (cumulative

annual growth rate) significantly. Finally, the analysis of robustness check using wavelet-based

portfolio weights and hedge ratios further support this evidence. The outcomes of this study bear

meaningful implications for academicians and market participants.

The introduction section follows five separate sections. Section 2 provides a survey of

existing literature. Section3 explains data and variables. Section 4 illustrates the methodological

setup. Section 5 reports empirical findings. Section 6 provides the conclusion and discussion.



2. A Brief Literature Survey

Empirical research on the dynamic interactions and price transmission mechanisms among

clean energy and crude oil has mainly evolved around the work of a) cointegration and Granger

causality (Ripsy Bondia et al., 2016; Henriques and Sadorsky, 2008; Kocaarslan and Soytas,

2019b; Kumar et al., 2012; Managi and Okimoto, 2013; Reboredo et al., 2017) and b) volatility

transmission (Ahmad et al., 2018; Broadstock et al., 2012; Dutta, 2017; Reboredo, 2015; Sadorsky,

2012; Wen et al., 2014, Uddin et. al., 2019; Bouri et. al., 2019; Dutta et. al., 2020) and

connectedness (Ferrer et al., 2018; Lundgren et al., 2018).

Before the onset of the 2008 financial crisis, studies carried out by Kumar et al. (2012),

and Henriques and Sadorsky (2008) determine that the fluctuations in crude oil price and risk-free

asset significantly impact the clean energy assets. In the aftermath of the financial crisis, studies

(Bondia et al., 2016; Kocaarslan and Soytas, 2019; Managi and Okimoto, 2013; Reboredo et al.,

2017, among others) evaluate the linkage among crude oil price and clean assets using

cointegration and causality. Managi and Okimoto (2013) report a positive connectedness between

clean energy and oil after the structural breaks found during the end of 2007. Bondia et al. (2016)

establish a cointegration relation between assets by utilizing an endogenous regime-dependent

cointegration test proposed by Gregory and Hansen (1996) and Hatemi-J (2008). Reboredo et al.

(2017) and Kocaarslan and Soytas (2019) report nonlinear causal relationship and cointegration

relationships between crude oil and clean assets, respectively, reaffirming earlier study by Kanjilal

and Ghosh (2018).

In another strand of literature, the researchers (Ahmad, 2017; Ahmad et al., 2018;

Broadstock et al., 2012; Dutta, 2017; Reboredo, 2015; Sadorsky, 2012; Wen et al., 2014¸ Uddin

et. al., 2019; Bouri et. al., 2019; Dutta et. al., 2020) investigate the dynamic associations and

volatility spillover between crude oil and clean energy assets. Sadorsky (2012) reports the time-



varying relationship of clean energy assets with crude oil. Broadstock et al. (2012) evaluate the

linkage structure of international crude oil and clean energy assets in China. Wen et al. (2014)

report significant asymmetric spillover between the new energy index of China and that of coal

and fuel index. Ahmad (2017) reports clean energy assets as net transmitters to crude oil. Reboredo

(2015) examines the systemic risk and connectedness dynamics between renewables and crude oil.

Dutta (2017) reports that the crude oil volatility index shocks significantly impact clean energy

assets. Ahmad et al. (2018) determine that volatility index (VIX), crude oil, and crude oil volatility

index (OVX) provide the best hedge for clean energy assets. Bouri et. al. 2019 that crude

oil and gold are the weak safe-haven assets for clean energy. Uddin et. al. 2019 show that RE

stock returns have a strong positive dependence on oil price change. Dutta et. al. (2020) report the

implied volatility index of crude oil as the most effective hedge against clean energy indexes.

Some recent studies have used wavelet (Nasreen et. al., 2020, Zhang et. al., 2020) and

network connectedness (Lundgren et. al. 2018, Ferrer et. al. 2018) to study the price transmission

dynamics of crude oil price and clean energy stocks. Ferrer et. al. (2018) provide evidence of

decoupling between traditional and clean energy industries. Lundgren et. al. (2018) report that

crude oil is a net receiver, while clean energy stocks as the third-largest net transmitter of spillover

during the recent global financial crisis. Nasreen et. al. (2020) show a weak association between

oil prices and clean energy stock returns. Zhang et. al. (2020) shows that oil price shocks on clean

energy stocks vary across quantiles.

Thus, the dynamics of clean energy assets (clean technology stocks) and crude oil prices

analyzed so far denied the statistical coherence because earlier studies have worked with return

series ignoring their nonstationary property. The current study is an attempt to catalyze this change

in the existing literature. It examines the price dynamics of crude oil and clean energy stock in



level and variance, preserving the nonstationary and heteroscedastic properties of the assets in a

TVECM-DCC-GARCH framework.

3. Data description

The data span considered ranges from 2nd April 2004 to 10th July 2020 on a weekly basis.

The sample is divided into seven different subperiods to incorporate the effects of the 2008

financial crisis and the ongoing COVID pandemic.  These subperiods are Pre&at&post-crisis

(April 2004 - July 2020), Pre&at&post-crisis-pre-COVID (April 2004 - Jan 2020), At&post-Crisis

(Aug 2008 - July 2020), At&post-crisis-pre-COVID (Aug 2008 - Jan 2020), Post-crisis (Jan 2009

July 2020), Post-crisis-pre-COVID (Jan 2009 - Jan 2020), and At crisis (Aug 2008 Dec 2008).

The global clean energy index considered for this study is the WilderHill Clean Energy Index

(CEI), which is an equally-weighted index of clean energy firms. This index is dedicated

exclusively to registering clean energy firms' performance in renewable energy, energy storage

and conservation, power delivery and conservation, and cleaner fuels. Most CEI stocks have a

market capitalization of $200 million and above. The rationale for selecting BRENT is that in the

trading world,

primarily a benchmark for the US oil market (Killian, 2020). Several studies consider Brent crude

as the leading representative of the global oil market given that more than 65% of the world's crude

oil markets have anchored this pricing system (Kanjilal and Ghosh, 2017; Lin and Li, 2015; Liu et

al., 2020; Mensi et al., 2014; Zhang et al., 2018, 2020). To validate the results of BRENT and CEI,

-
to avoid small sample bias.

We have presented the empirical results of three subperiods i) Pre&at&post-crisis-pre-COVID, ii) Pre-crisis, and iii)
Post-crisis-pre-COVID in the text because the threshold cointegration becomes statistically insignificant when the
COVID pandemic period is included and second these three subperiods encompass the entire data span and pre- and
post- financial crisis and hence they are sufficient to address the research objectives. This also maintains brevity.
Results for other subperiods are available on request. In accordance with this, the descriptive statistics are produced
for the three subperiods in Table 1.



we also used WTI, its futures (1,3,6,9,12 months), and the S&P oil index for various sample

subperiods. All the data has been sourced from the Bloomberg terminal. CEI, BRENT, WTI, WTI

futures, and S&P oil index are represented as lnCEI, lnBRENT, lnWTI lnWTI_F1, lnWTI_F3,

lnWTI_F6, lnWTI_F9, lnWTI_F12, and lnS&POI after the logarithmic transformation. We have

also considered control variables like carbon price (CO2), US economic policy uncertainty index

(uncertainty), and S&P volatility index (SPXVOL) to examine their effects on the relationship

between crude oil and clean energy stock price. A logarithmic transformation is also applied to

these control variables. A graphical representation of the CEI and BRENT series is exhibited in

Figure 1 for the entire sample period. Table 1 provides the preliminary statistics of both assets for

three sample periods. The nonstationary properties of underlying variables lnCEI and lnBRENT

are checked by ADF, PP, and KPSS tests and a test evaluating structural shifts (Bai and Perron,

2003a, 2003b, 1998). Both underlying assets are  and possess structural breaks for all three

subperiods.

Table 1. Descriptive statistics

Pre-crisis Post-crisis-pre-COVID Pre&at&post-crisis-
pre-COVID

lnBRENT lnCEI lnBRENT lnCEI lnBRENT lnCEI
Mean 4.14 5.23 4.29 4.09 4.25 4.43
Maximum 4.95 5.68 4.84 4.77 4.95 5.68
Minimum 3.47 4.83 3.32 3.59 3.32 3.60
Std. Dev. 0.32 0.18 0.35 0.31 0.35 0.58
Skewness 0.32 0.01 -0.23 0.49 -0.07 0.45
Kurtosis 2.92 2.23 2.06 2.14 2.12 1.82
Jarque-Bera 3.89 5.64 26.13*** 41.59*** 27.57*** 75.18***

 For the sake of brevity, we chose not to report these estimates, but are available upon request.



Figure 1. Graphical illustration of the development of the underlying series.

4. Empirical framework

This section discusses the estimation methodologies of the Threshold vector error

correction model (TVECM) and DCC-GARCH highlighting the main equations in light of the

underlying assets being used for this study. The variables under study are represented by

(lnBRENT) and  (lnCEI).

4.1. Threshold Vector Error Correction Model (TVECM):

Following Hansen and Seo (2002), we express a two-regime TVECM of order (p+1) as:

1

where corresponds to the threshold coefficient. is a dimensional  assets, lnBRENT, and

lnCEI cointegrated of  vector .  represents the  error correction term

(ECT).  represent a matrix of  terms represented as:
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2

Let  represents  output matrix where , and corresponds to normally

distributed error vector, , with covariance matrix represented as . We may

rewrite Equation 1 as:

3

where,

with  representing indicator function. C1 and C2 represent the coefficient matrices in two

discrete regimes.  corresponds to the ECT. The parameters, , is

estimated using a constrained ML estimation process.  We may define the threshold cointegration

hypothesis by utilizing Lagrange-Multiplier (LM) test as:

4

where  represents the  percentile of  and  corresponds to percentile,

and ; ; and .

4.2. DCC-GARCH approach

The mean-equation in GARCH process specified as:

5

6

 We refer to Hansen and Seo (2002) for detailed discussion of the estimation procedure.



where  represents the log-difference of both assets,  represents intercept,  represents the

impact of lagged returns,  corresponds to error term,  represents innovations matrix, and

represents conditional volatility, which can be decomposed as:

7

8

9

10

where in equation 8,  and  correspond to conditional variances from lnCEI and lnBRENT,

respectively.

4.3. Portfolio weights, hedge ratios, and hedging effectiveness

We utilize the DCC-GARCH process to examine whether the inclusion of these assets,

lnCEI and lnBRENT, together in a portfolio, would result in risk minimization. Following Kroner

and Ng (1998), we defined the weights of the optimal portfolio as:

11

12

where  corresponds to the weight of $1 portfolio to be invested in crude oil at time , and the

weight of clean energy equities amounts to . Following Kroner and Sultan (1993), we

estimate the optimal hedge ratios for a $1 long position in crude oil and  short of CEI as:

13



Following Ku et al. (2007), we estimate the hedging effectiveness (HE) as:

14

where  represents CEI variance and  corresponds to portfolio variance. The

higher values of HE suggest a greater portfolio uncertainty reduction, thereby favoring the

underlying portfolio strategy (Arouri et al., 2011).

5. Results and Discussions

We organize the structure of this section as follows. First, we discuss the results of

threshold cointegration, its parameter estimation, and short-and long-run dynamics of TVECM. In

the next step, we present the results of the DCC-GARCH of TVECM residuals and the hedging

statistics. Finally, we discuss the results of validation and robustness checks.

5.1. Threshold cointegration, threshold parameter estimation, and TVECM

The estimation process of TVECM involves three major steps; first, testing for the presence

of threshold cointegration, where the underlying variables are integrated of order one. The

 null against threshold

cointegration. Second, it estimates the threshold parameter that determines the sample distribution

in two or three discrete regimes. Finally, it estimates coefficient matrices in these regimes, which

control the dynamics of the regimes as defined by the threshold parameter. After examining the

threshold cointegration, we have applied statistical tests to determine the appropriate number of

thresholds which would determine the regime driven dynamics of the variables.

Table 2 reports the results of threshold cointegration between lnBRENT and lnCEI for three

subperiods, i) Pre-crisis, ii) Post-crisis-pre-COVID, and iii) Pre&at&post-crisis-pre-COVID.

Before discussing the results of these three subperiods, it is critical to take a closer look at the



threshold cointegration results for seven subperiods and understand the reasons for the selection

of these sample periods. Table A6 in the Appendix presents a summary result of threshold

cointegration of clean energy with BRENT, WTI, its futures, and S&P oil index across all

subperiods. Results indicate that the threshold cointegration becomes statistically insignificant

when the COVID pandemic period is included in the data span. Similar is the case when the

financial crisis period is scanned for a threshold cointegration. The findings for WTI and CEI are

consistent with BRENT and CEI. Based on the summary results, we have selected three sample

periods to examine the linkage between clean energy and crude oil price in TVECM-DCC-

GARCH. The selection serves to attain the larger objectives of this study.

Coming back to the results of Table 2, we find that the SupLM test statistic is statistically

significant at the 5% level for the subperiods, Post-crisis-pre-COVID and Pre&at&post-crisis-pre-

COVID period, whereas, for the pre-crisis subsample, this estimate is significant at the 10%. This

confirms that lnCEI and lnBRENT are linked by a cointegrating relationship that witnessed

threshold(s). This implies a weak cointegration link before the financial crisis of 2008 between

these assets, which become significantly stronger over the post-crisis subsample. To understand

the short-term deviations and asymmetric adjustments towards the cointegrating relationship, the

tests of equality of i) Error correction Model (ECM) parameters and ii) dynamic parameters across

two regimes are examined. Results indicate that the null-hypothesis for the Wald equality test of

ECM parameters between lnBRENT and lnCEI is rejected at a 5% threshold level for the second

and third subperiods. However, it is rejected at a 10% threshold for the pre-crisis period. This

implies that the ECM adjustment parameter across two regimes is asymmetric and regime

dependent. However, the impact is stronger for the post-crisis subsample. The Wald equality test



of dynamic coefficients is rejected at the 5% threshold for the pre-crisis subsample, indicating

short-term dynamics of lnBRENT and lnCEI in two regimes are dissimilar.

Table 2: Threshold cointegration test

Pre-crisis
Post-crisis-pre-

COVID
Pre&at&post-

crisis-pre-COVID

SupLM Test Statistic
13.25*
(0.06)

19.28***
(0.01)

23.03***
(0.00)

Linear Cointegrating Vector Estimate 2.10
(0.66)

1.54
(0.60)

0.095
(0.32)

Wald Test for Equality of Dynamic Coefficients 10.30**
(0.03)

26.35***
(0.00)

15.10**
(0.02)

Wald Test for Equality of ECM Coefficients
4.52*
(0.10)

7.41**
(0.02)

10.80***
(0.00)

 significance.
Figures in (*) represent p-values.

In addition, we have applied three different statistical tests; namely, i) BBC (Bec et al.,

2004) (Panel A of Table 3), ii) KS (Kapetanios et al., 2003) test (Panel B of Table 3), and iii) Seo

(2011, 2006) (Table A2, Appendix) TVECM model to test if two or three regimes TVECM is the

best fit for our sample periods. The sample subperiods for the BBC and KS tests across all variables

are applied for those cases where the threshold cointegration is found to be statistically significant

at the 5% level (Table A6, Appendix). In summary, the test results demonstrate that a one threshold

model or a two-regime TVECM is more appropriate for our data. For example, the BBC test results

in panel A of Table 3 fail to reject the null of unit root for symmetric three-regimes at 5%

significance level. KS test also cannot reject the null of unit root for symmetric three regimes for

any variables across all subperiods (panel B of Table 3). To further investigate the possibility of

the presence of three regimes  (Seo,

2011, 2006) three-regime TVECM model.

 TVECM is estimat -crisis-pre- -
crisis-pre-
reported in the Appendix, Table A2. The results (Table A2) show evidence of the statistical significance of ECT
consistently across two regimes. The outcomes are in line with the finding of BBC (2004). Thus, a two-regime (one
threshold) is the best choice for our data.



Table 3: TVECM regime selection tests
Panel A: BBC-SETAR test

Max Wald Test Pre-crisis Post-crisis-pre-COVID Pre&at&post-crisis-pre-
COVID

lnBRENT 5.03 16.02 17.25*
lnCEI 12.19 14.22 14.41

Panel B: KS test

Avg(W) Test Pre-crisis Post-crisis-pre-COVID Pre&at&post-crisis-pre-
COVID

lnBRENT 0.202 0.033 0.067
lnCEI 0.056 0.016 0.029

Further details are given in Table A6, Appendix

Having established the suitability of a two-regime TVECM for our data, we present the estimation

of a two-regime TVECM in Table 4 for three subperiods i) Pre-crisis, ii) Post-crisis-pre-COVID,

and iii) Pre&at&post-crisis-pre-COVID. A two-regime TVECM is also estimated for all

subperiods.

Regime switching dynamics are endogenously determined phenomenon in a TVECM. The

regime definition depends on the estimated threshold parameter, which determines the distribution

of two or three regimes. For instance, for the post-crisis period excluding the COVID 19 pandemic

days, th -1.9079. The estimated cointegrating parameter is

C = 1.3386. So, normal and extreme regimes are identified based on the formula, t-1)=

lnBRENTt-1  C * lnCEIt-1 t where C is the cointegrating parameter,

parameter. The estimated cointegrating relationship is t-1 = lnBRENTt-1  1.3386 (lnCEIt-1),

implying that a 1 percent increase in clean energy stock price brings a 1.33 percent increase in

crude oil price. The threshold parameter estimate is -1.9079. Based on this value, the threshold

t-1 -

1.9079, i.e. lnBRENTt-1 lnCEIt-1 )  1.9079. In other words, the crude oil price falls below

 The result is reported in the Appendix (Table A3) to maintain succinctness.



the clean energy stock price less 1.9079 percent. This seems to be an extreme phenomenon in the

commodity market as it is reasonably unusual or rare. This regime has 18 percent of observations.

So, this regime is termed as an  On the other hand, the second regime occurs

t-1 > -1.9079. This means crude oil price exceeds clean energy stock price less 1.9079

percent. This seems to be more usual or normal. Hence the second regime can be labelled as a

82 percent observations. Similarly, the threshold parameter defines the

distribution of normal and extreme regimes in the other two subperiods. The distribution of sample

observations in subperiods suggests that Brent crude oil price has remained higher than the CEI in

most cases over this study period. The proportion of the distribution of sample observations into

two regimes falls in line with previous works

Hansen and Seo, 2002; Kanjilal and Ghosh, 2017; Rapsomanikis and Hallam, 2006). The existence

of the threshold parameter indicates that the price transmission between the two variables is

different in two regimes, and hence, it is regime-dependent.



Table 4. Vector error correction model of threshold cointegration
Regime1 ( t-1 Regime II ( t-1

Variables lnBRENT lnCEI lnBRENT lnCEI
Panel A: Pre-crisis Period

Threshold Estimate  = -6.5520; Cointegrating Vector Estimate = (1, -2.0252)

(ECT)t-1 : t-1
-0.0235
[0.0367]

0.1147**
[0.0464]

-0.0160
[0.0159]

0.0101
[0.0179]

Constant -0.1491
[0.2469]

0.7637**
[0.3098]

-0.1003
[0.1006]

0.0664
[0.1137]

lnBRENTt-1
0.0247

[0.1114]
0.1542

[0.1461]
0.3174**
[0.0732]

0.0516
[0.0731]

lnCEIt-1
0.1392

[0.1031]
0.1958

[0.1429]
-0.0850
[0.0739]

-0.0178
[0.0814]

Sample size (%) 33% 33% 66% 66%
Panel B: Post-crisis-pre-COVID Period

Threshold Estimate  = -1.9079; Cointegrating Vector Estimate = (1, -1.3386)

(ECT)t-1 : t-1
-0.1486
[0.0979]

0.2077**
[0.1070]

-0.0069**
[0.0035]

0.0005
[0.0048]

Constant -0.2901
[0.1982]

0.2575
[0.2163]

-0.0075**
[0.0037]

0.0006
[0.0055]

lnBRENTt-1
-0.2903**
[0.1245]

-0.3974**
[0.1469]

0.2249**
[0.0477]

0.0241
[0.0507]

lnCEIt-1
0.2540

[0.1519]
0.4321**
[0.1512]

0.1745**
[0.0426]

-0.0155
[0.0530]

Sample size (%) 18% 18% 82% 82%
Panel C: Pre&at&post-crisis-pre-COVID Period

Threshold Estimate  = 4.3388; Cointegrating Vector Estimate = (1, 0.1008)

(ECT)t-  t-1
-0.0783**
[0.0409]

0.0325
[0.0327]

-0.0016
[0.0048]

-0.0167**
[0.0059]

Constant 0.3339
[0.1724]

-0.1366
[0.1372]

0.0075
[0.0237]

0.0793**
[0.0287]

lnBRENTt-1
0.1485**
[0.0794]

-0.0929
[0.0750]

0.2297**
[0.0465]

0.0578
[0.0747]

lnCEIt-1
0.0213

[0.1148]
-0.1307
[0.1311]

0.1888**
[0.0392]

0.0512
[0.0673]

Sample size (%) 20% 20% 80% 80%
Notes: Figures in parenthesis show Eicker-White standard errors. *, ** and *** imply significance at 10%,

The lag structure has been selected
based on the lowest AIC and SC criteria. Regime I and II represent extreme and normal regimes,
respectively.

The estimation results of TVECM indicate that while in the pre-financial crisis crude oil

price has led the clean energy price, the influence of crude oil price reduces in the post-crisis days,

excluding pandemic period with clean energy price becoming the main driver. A closer look into



Table 4 suggests that the ECT, , is significant for the pre-crisis period in Regime I (extreme

regime) when the explained asset is lnCEI. The ECT becomes significant over the Post-crisis-

pre-COVID subsample lnBRENT is the explained asset in Regime II (normal regime). In

the short-term as well, lnCEI lnBRENT in both extreme and normal regimes. For the

entire sample excluding COVID19, we find the dominance of lnCEI over lnBRENT, where ECT

is significant in the extreme regime when lnBRENT is estimated. In the short-term, lnCEI causes

lnBRENT in a normal regime. In the pre-crisis period, however, clean energy stock price is not

found to bring any impact on crude oil prices, confirming a dominance of crude oil in the market.

The dynamics reverse over the post-crisis period, where the clean energy stock emerges as a strong

driver of crude oil price in a normal regime. Our findings differ from earlier studies that

recommend that the oil price governs over clean energy. However, the result that crude oil drives

the clean energy stock in extreme regimes falls in line with research outcomes (Uddin et. al., 2019;

Dutta et. al., 2020; Zhang et. al., 2020). Our study also deviates from Ferrer et. al. (2018) and Bouri

et. al., (2019), who showed a decoupling or a weak link between clean energy and oil price returns.

However, this research is in accordance with Lundgren et. al. (2018) to some extent, who suggest

clean energy stock is one of the net transmitters, and oil is a net receiver. Table 4 further establish

a bidirectional association between crude oil price and clean energy stock price in a normal regime

for the entire sample (including the financial crisis of 2008 but excluding COVID days). The error

correction e ects are stronger in Regime I than Regime II across all subperiods. The estimated

ECT coefficients suggest the adjustment speed towards long-run equilibrium. These findings

confirm the existence of a nonlinear regime-based adjustment process between these two assets.

The above causal dynamics are further validated for WTI, its futures, and the S&P oil index

with clean energy stock price. Results (Table A3, Appendix) directs that WTI and its futures have



shown similar results as BRENT crude oil price for all subperiods. The S&P oil index, however,

has shown similar findings with BRENT only for pre-financial crisis days. We have also examined

the presence of threshold cointegration and studied the causal dynamics between crude oil and

clean energy stock prices after controlling the effect of the carbon price, uncertainty, and volatility

index in a two-regime TVECM. Tables A4 and A5 in the Appendix present the summary of

empirical findings, which indicate that the relationship of crude oil price and clean energy

withstand the effect of control variables. We find that policy uncertainty and S&P volatility index

share a two-regime threshold cointegration with BRENT and clean energy stock price for the entire

sample. In the post-financial crisis period, excluding the COVID pandemic, policy uncertainty

exhibits a threshold cointegration link with BRENT, WTI, and clean energy stock price. These

outcomes are consistent with Lundgren et. al. (2018), as they report policy uncertainty is the main

volatility transmitter. It is critical to note that the presence of policy uncertainty and the S&P

volatility index has not altered the findings of clean energy stock price becoming the key driver

for the crude price since the onset of the financial crisis.

5.2 TVECM-DCC-GARCH

Before analyzing TVECM-DCC-GARCH results, we test the presence of the ARCH effect

in the TVECM residuals of lnBRENT and lnCEI for short-, medium, and long-term lag orders.

Table 5 suggests that the ARCH effect is statistically significant in both regimes for the entire

sample. In the Post-crisis-pre-COVID period, the ARCH effect is present only in the normal

regime. DCC-GARCH is then estimated for the cases where the ARCH effect is significant. In

view of the above findings, we estimate the TVECM-DCC-GARCH model with the mean equation

obtained from the TVECM for i) Pre&at&post-crisis-pre-COVID and ii) Post-crisis-pre-COVID

days. The DCC-GARCH analysis of TVECM residuals recommends that the volatility spillover



among assets is statistically significant.  Figure 2 depicts the dynamic conditional correlation in

variance between lnBRENT and lnCEI for the three subperiods, and the regime DCC-GARCH

has been estimated for. The volatility association between crude oil and clean energy emerges to

be more dynamic in the post-crisis days in a normal regime. The dynamic conditional correlation

varies from -0.05 to 0.4 in the post-crisis days. The pre-crisis era has shown a weak association in

volatility between these two assets varying from -0.1 to 0.1. The correlation is found to be less

than 0.5 in all cases. This finding is in line with Sadorsky (2012), who also argues that although

clean energy and oil markets are positively correlated, it is still possible that investors holding

assets in these sectors would receive portfolio diversification benefits.

Table 5: ARCH-LM test
Regime I Regime II

2 Stat (p-value) lnBRENT) lnCEI) lnBRENT) lnCEI)
Panel A. Pre-crisis

Lag 5

N

*
Lag 10
Lag 15
Lag20 **

Panel B. Post-crisis-pre-COVID
Lag 5

NA

*** ***
Lag 10 *** ***
Lag 15 *** ***
Lag 20 *** ***

Panel C. Pre&at&post-crisis-pre-COVID
Lag 5 *** ** *** ***
Lag 10 ** ** *** ***
Lag 15 * ** *** ***
Lag 20 ** ** *** ***

Notes: The table presents the statistical significance of the ARCH effect at 5% level. NA indicates the ARCH effect
is not statistically significant.  Regime I and II represent normal and extreme regimes, respectively.

 Estimation results are available on request.



Figure 2. Development of dynamic conditional correlation in variance between lnBRENT and lnCEI

Panel A: DCC Pre-crisis -Regime II Panel B: DCC Post-crisis-pre-COVID-Regime II

Panel C: DCC Pre&at&post-crisis-pre-COVID
Regime I

Panel D: DCC Pre&at&post-crisis-pre-COVID
Regime II

We now discuss the results of optimal portfolio weights and hedge ratios. Table 6 provides

the statistics of time-varying optimal weights  and hedge ratios  for the sample

subperiods based on the dependence structure estimated in TVECM-DCC-GARCH. The optimal

weights indicate the proportion of investment that should be distributed among the two underlying

assets. Looking at Table 6, which exhibits the hedging effectiveness of BRENT and CEI index,

we find that the risk-minimizing hedge ratios, , take similar values across the regimes and

subsamples, although the corresponding value for the pre-crisis subsample in regime II appears to

be negative.10 The hedging has become more expensive ($0.18) in the post-crisis days compared

10 In addition, we have also evaluated the hedging effectiveness of WTI and its futures with CEI. The results are not
reported to maintain brevity. Results are available on request.
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to the pre-crisis era where it was $0.02 in absolute terms, the negative sign in indicates a reverse

position. Taking the Post-crisis-pre-COVID subsample in regime II as an example, we observe

that a $1 long position in crude oil can be hedged by an 18 cents short position in CEI. The portfolio

optimum weights, on the other hand, are considerably different across the regimes. For instance,

the weights for regime I and regime II amount to 0.39 and 0.61 for Pre&at&post-crisis-pre-COVID

subsamples. These estimates suggest that in regime I, 39 cents should be invested in clean energy

assets, while the corresponding amount in regime II is 61 cents. Hence, hedging can be considered

effective in the markets considered in this empirical work.

The estimates of hedging effectiveness (HE) across the regimes indicate that maintaining

the BRENT-CEI portfolio results in a noticeable reduction of portfolio risk. For example, the

uncertainty reduction with the incorporation of BRENT in the portfolio with CEI varies from 28%

to 53% over two different regimes during the Pre&at&post-crisis-pre-COVID period. In the Post-

crisis-pre-COVID period, the maximum hedging effectiveness attains 78% and has exceeded the

60% cut-off in 12 percent cases. In the pre-crisis days, the average HE statistics is more consistent

due to the less volatile association between these assets. Overall, the inclusion of crude oil, together

with clean energy in a portfolio, leads to higher risk-adjusted-performance.

Table 6: Portfolio weights, hedge ratios, and hedging effectiveness (HE) from TVECM-DCC-GARCH
Regime I Regime II

lnBRENT Vs lnCEI Pre-crisis

Post-
crisis-
pre-

COVID

Pre&at&post-
crisis-pre-
COVID

Pre-crisis
Post-crisis-

pre-
COVID

Pre&at&post-
crisis-pre-
COVID

NA

0.20 -0.02 0.18 0.18
0.39 0.55 0.56 0.61

% of cases HE > 60% 30% 0% 12% 2.7%
Average(HE) 0.53 0.47 0.35 0.28

Max(HE) 0.75 0.51 0.78 0.70

To empirically examine the information richness of our integrated modelling approach, we apply Bollinger Bands
trading strategy (Bollinger, 2001; Ramlall, 2016) for TVECM-DCC-GARCH and DCC-GARCH for an initial capital
amount of $1000. Results suggest a significant increase in CAGR (13.70%) when TVECM-DCC-GARCH is applied
as compared to DCC-GARCH (5.20%) indicating an effective trading strategy for the market practitioners. We chose
not to report the results to maintain brevity. The results are available on request.



Min (HE) 0.08 0.41 0.00 0.01
Notes: The table presents the hedging effectiveness of BRENT and CEI. NA implies not applicable as the ARCH
effect is not statistically significant. Regime II presents a normal regime.

5.3 Validation and robustness checks

We corroborate the empirical findings using D&

finally evaluate the robustness of hedging strategies using wavelet methods for three subperiods.

5.3.1. D&P Causality Test

The D&P causality is examined for lnBRENT and lnCEI for the subperiods and regimes

where ARCH effect is statistically significant. The D&P causal test is carried out at four stages

i) VAR-filtered residuals

ii) TVECM- filtered residuals

iii) MEAN-DCC-GARCH filtered residuals

iv) TVECM-DCC-GARCH filtered residuals

This approach corroborates the need for mean plus variance modelling by looking into the causal

relationship between lnBRENT and lnCEI for our data. The causality is tested sequentially on

filtered residuals, first on VAR filtered residuals, second on TVECM filtered residuals, third on

MEAN plus DCC-GARCH filtered residuals, and finally on TVECM-DCC-GARCH filtered

residuals. In the event of rejecting the null of no causal relationship between lnBRENT and lnCEI

residuals at any stage, we could infer that the residual has not become white noise and the model

applied has not been able to capture embedded information in the underlying variables completely.

Table 7 Pre&at&post-crisis-pre-COVID  no causal

relationship between lnBRENT and lnCEI is rejected for the first three cases in both regimes.

The causality from lnCEI to lnBRENT shows a strong rejection as opposed to lnBRENT to

lnCEI. But we fail to reject the null of no causality at the 5% level for the residuals of TVECM-

DCC-GARCH. A similar finding is observed for the other subperiods as well. The outcomes



support the statistical prudence of using a TVECM-DCC-GARCH. The results further support the

finding that CEI plays a major role in driving the BRENT because the null of no causality is

rejected from lnCEI to lnBRENT and not the opposite direction in the post-crisis period.

Table 7: D&P causality
Regime I Regime  II

Subperiods

VAR-
Filtered
Residual
Series

TVECM-
Filtered
Residual
Series

MEAN-
DCC-
GARCH-
Filtered
Residual
Series

TVECM-
DCC-
GARCH-
Filtered
Residual
Series

VAR-
Filtered
Residual
Series

TVECM-
Filtered
Residual
Series

MEAN-
DCC-
GARCH-
Filtered
Residual
Series

TVECM-
DCC-
GARCH-
Filtered
Residual
Series

lnBRENT lnCEI
Post-crisis-pre-
COVID NS NS

Pre&at&Post-
crisis-Pre-
COVID

* * NS NS *** *** *** NS

Post-crisis-pre-
COVID NS ** * ** NS

Pre&at&post-
crisis-pre-
COVID

*** ** *** NS **** *** *** *

Notes: This table presents the results of D&P causality between  and  for the subperiods where
 represents the first-difference. *, **, and *** show 10%, 5%, and 1% significance level.

NS implies no statistical significance. Embedding dimension is m=2.

5.3.2 rolling causality test

prices for three subperiods to understand how the dynamics of crude oil and clean energy prices

change in the absence of regime. Table 8 shows the empirical results. In the pre-crisis period, the

null of no causality from lnBRENT to lnCEI is rejected for more than 80% of the cases whereas

the instance of rejecting the null from lnCEI to lnBRENT is zero. In the post crisis days, the

causal link from lnCEI to lnBRENT has been rejected in a greater number of cases. The results

again validate the prominence of CEI over BRENT in the post-crisis period.



Table 8: Hill's rolling window causality

Pre-crisis Post-crisis-pre-COVID Pre&at&post-crisis-pre-
COVID

Causal Directions FW=180 FW=180 FW=180 FW=180 FW=180 FW> 180
lnBRENT lnCEI 85%

(3)
15%
(4)

57%
(6)

57%
(6)

85%
(3)

81%
(3)

lnCEI lnBRENT 0% 44%
(4)

56%
(5)

56%
(5)

0% 0%

Notes:  The table presents the percentage of rejection of the null hypothesis of causality from lnBRENT to lnCEI
and vice versa. Figures in parenthesis represent lag order of the VAR model based on the Akaike criterion in Hill
(2007) d operator and FW= Fixed window.

5.3.3. Wavelet-based portfolio weights and hedge ratios

In order to capture hedging dynamics from the perspective of investor trading behavior, we

examine the hedge effectiveness short- to the long-run process by utilizing a multiscale

decomposition process. This approach captures the heterogeneous behaviour and market trading

mechanics among the investigated assets. The application of this process has some comparative

advantages in comparison with the standard approach of hedging effectiveness. First, it captures

the spectral process or second-order moments, which is very important for financial assets, (2) it

captures market participants, who may have diverse (short-term vs. long-term) trading objectives,

where short-run market fluctuations (i.e., several days or weeks), and long-run oscillations (i.e.,

months or quarters). Table 9 provides the summary statistics of the wavelet-based measure of

portfolio weights and hedge for the three subsamples. For the pre-crisis period, the optimal

portfolio weights  does not significantly vary over the short-run horizon (S1-S2).  However,

we observe a significant divergence in portfolio weights  over the medium-run horizon (S3-

S4) with an increased inclination towards the investment in the clean energy market. This is in

accordance with the increased investment in renewables and clean technology. The portfolio

 These scales represent the decomposition scales of Maximal Overlap Discrete Wavelet Transform (MODWT). S1
corresponds to variations in series over two to four days, S2 shows variations over 4 to 8 days, S3 exhibits variations
between 8 to 16 days, and so forth, S7 represents variations between 128 and 256 days.



weights over the medium- to the long-run horizon (scale 5 and 6) are more inclined towards

investment in crude oil. One plausible explanation for such behavior is the fact that clean energy

and clean technology have not been fully matured, with increased room for improvement over the

medium-run. Over the long-run horizon, we observe a higher investment in optimum portfolio

weight in the clean energy market. The values of hedge ratios indicate that hedging the $1 long

position in crude oil may become expensive from medium- to the long-run horizon. In terms of

HE, we observe an increase in the effectiveness of a hedging strategy, which has increased over

the long-run horizon.

Table 9. Robustness check

Hedging Standard deviation Skewness Kurtosis
 Effectiveness Hedged Unhedged Hedged Unhedged Hedged Unhedged

Panel A: Pre-crisis period
Original 0.518 0.100 0.463 0.027 0.040 -0.427 -0.470 3.019 3.329
S1 0.580 0.037 0.560 0.017 0.027 -0.287 -0.118 3.677 3.199
S2 0.518 0.075 0.465 0.013 0.018 -0.065 -0.290 2.761 3.292
S3 0.335 0.015 0.419 0.010 0.013 0.263 0.039 2.394 2.303
S4 0.317 0.621 0.260 0.007 0.010 -0.200 -0.255 2.211 2.688
S5 0.604 0.249 0.444 0.004 0.006 -0.112 0.303 2.090 2.345
S6 0.791 0.188 0.705 0.002 0.006 -0.850 -0.073 3.272 1.622
S7 0.474 0.409 0.566 0.000 0.003 -1.294 -0.462 4.959 1.933

Panel B: Post-crisis-pre-COVID
Original 0.551 0.215 0.446 0.027 0.038 -0.507 -0.481 4.975 4.153
S1 0.654 0.072 0.596 0.016 0.027 0.065 -0.141 4.012 4.055
S2 0.499 0.332 0.357 0.016 0.020 -0.194 -0.074 4.158 3.708
S3 0.547 0.385 0.437 0.010 0.016 -0.288 -0.017 4.924 3.650
S4 0.415 0.489 0.376 0.006 0.010 -0.092 -0.086 2.993 4.307
S5 0.293 0.950 0.194 0.004 0.006 0.133 0.000 3.487 3.914
S6 0.361 0.626 0.349 0.002 0.004 -0.059 0.186 3.473 3.528
S7 0.508 0.594 0.442 0.001 0.005 -0.284 -0.405 2.294 2.580

Panel C: Pre&at&post-crisis-pre-COVID
Original 0.553 0.187 0.456 0.029 0.045 -0.776 -0.594 6.382 7.106
S1 0.639 0.065 0.589 0.018 0.031 0.196 0.107 6.816 8.071
S2 0.521 0.263 0.399 0.016 0.023 -0.090 -0.098 4.708 6.071
S3 0.501 0.270 0.452 0.010 0.016 -0.116 0.042 4.295 3.521
S4 0.378 0.479 0.349 0.007 0.011 -0.288 -0.178 3.318 5.490
S5 0.293 0.838 0.236 0.005 0.008 0.103 0.075 5.591 4.242
S6 0.411 0.558 0.410 0.002 0.006 -0.546 -0.501 7.428 5.051
S7 0.525 0.478 0.413 0.001 0.005 -0.410 -0.184 2.976 2.476



Notes: This table reports the wavelet-based estimates of portfolio weights, hedge ratios, and hedging
effectiveness.

The robustness check for the Post-crisis-pre-COVID subsample is reported in Panel B of Table 9.

We observe significant variations in portfolio weights over pre-and post-crisis periods across

different scales. The medium-term portfolio weights are more inclined towards a higher proportion

of investment in the clean energy market. In terms of hedge ratios, we observe an expensive hedge

over the post-crisis-pre-COVID period. However, in terms of HE, we report an increase in the

effectiveness of the optimal portfolio towards the long-run horizon. The subsample of Pre&at&post-

crisis-pre-COVID in Panel C of Table 9 closely follows the same trend as that of the post-crisis-pre-

COVID subsample. This may be attributable to a significantly larger number of observations over

this sample period comparative to the pre-crisis period. Overall, these findings are in accordance

with the summary statistics of regime-based portfolio weights and hedge ratios.

6. Conclusion

We examine the price dynamics between two nonstationary series, namely clean energy

index and crude oil price, by applying a two regime TVECM and then integrating DCC-GARCH

to the residuals of TVECM to model the volatility spillover. The integrated model is then used to

develop a dynamic regime-dependent hedging strategy supplemented by wavelet-based hedging.

The empirical outcomes are validated with other variants of oil price and its futures along with a

set of control variables like carbon price, policy uncertainty, and volatility index. Additionally, to

validate the information value of a TVECM-DCC-GARCH model, we apply D&P causal tests

sequentially on the filtered residuals of VAR, TVECM, MEAN-DCC-GARCH, and TVECM-

DCC-GARCH. Our study covers the period from 2nd April 2004 to 10th July 2020, which is

further subdivided into seven different subperiods that incorporate the effects of the 2008 financial

crisis and the ongoing COVID pandemic period. The study advances the literature by examining



the long-and short-term dynamics of these assets in their levels where the information of the first

moment of these assets is preserved, which generally disappears or becomes a random walk

process in the return series.

Our research establishes that the two nonstationary series, crude oil price, and clean energy

stock price, share a two-regime nonlinear cointegrating relationship with a threshold effect. Our

findings indicate a weak cointegration link before the financial crisis of 2008, which becomes

stronger over the post-crisis subsample. The threshold cointegration link, however, breaks when

the data period encompasses the COVID pandemic period. Similar evidence is also uncovered

when the threshold cointegration is examined for financial crisis days. The broken link between

clean energy and crude oil price in a disruptive external environment indicates that the two

nonstationary assets have wandered substantially from the common link. This phenomenon was

temporary for the 2008 financial crisis days as the nexus between these assets has reemerged as a

cointegrated link in the post-crisis periods. The first half of the COVID pandemic period may have

impacted the relationship in a similar fashion. The causal dynamics from the TVECM indicates

the dominance of crude oil over the clean energy stock price in the pre-crisis period. The dynamics

reverse over the post-crisis period, where the clean energy stock emerges as a strong driver of

crude oil price in a normal regime.

The study further establishes that policy uncertainty and the S&P volatility index share a

threshold cointegration with BRENT crude oil and clean energy stock price for the entire sample.

In the post-financial crisis days, policy uncertainty exhibits a threshold cointegration link with

BRENT, WTI, and clean energy stock price. This suggests the importance of policy uncertainty in

the linkage between clean energy and crude oil price over S&P volatility. The presence of policy

uncertainty corroborates the findings that the clean energy stock price is the key driver for the



crude oil price. The volatility spillover analysis indicates that the link between crude oil and clean

energy is more dynamic in the post-crisis days. The dynamic conditional correlation of volatilities

has stayed at a low level suggesting an effective hedging possibility between clean energy and

crude oil price. The hedging effectiveness statistics have further confirmed that hedging can be

considered useful in oil and clean energy stock markets.

The outcomes of the study have significant implications for the investors and policymakers.

Traditionally, the crude oil price has been the main driver of the energy market representing the

state of the world economy, primarily due to the main energy supply source and one of the largest

traded commodities in the world. However, unlike the majority of earlier studies, this paper

strongly advocates that clean energy stocks have become the new leading indicator of the energy

market. This indicates that market participants would rely more on the clean energy stocks'

movements to allocate and diversify portfolios in most cases, and oil may not be the appropriate

safe haven for the clean energy index. Our outcomes are in accordance with the focus of global

investors who have now shifted towards non-fossil fuel because the investment in fossil fuel

companies is becoming risky as global action on emissions gets tougher, which may create

stranded assets in the oil sector (Henriques and Sadorsky, 2018). The fossil fuel divestment

movement seems to have accelerated post the COVID pandemic.

This study further benefits the investors by allowing them to adjust their portfolio basis a

regime dependent mean and variance return of the stocks. One of the important practical

develop trading strategies based on the proposed model. The policymakers, on the other hand, need

to ensure that the investment in the sector remains uninterrupted and sustainable to prevent a major

downfall of the global economy. Moreover, investing in green businesses has ecological and social



impacts that assure a certain degree of sustainability. Therefore, it is crucial for socially responsible

investors to have proper knowledge of how to hedge their portfolio risk. We believe that the results

of this paper would have valuable information for those investors who intend to identify every

possible trait associated with clean energy stocks. In particular, our investigation offers stylized

facts about ethical investments which investors might consider when swapping dirty assets for

green stocks to maintain a low-carbon portfolio. Given that eco-friendly investors not only focus

on the environmental performances of a firm but also consider its financial performances, the

findings of this research will be useful for such stakeholders.
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Appendix

A.1 Rolling Window Causality Test

Following Hill (2007), we utilize recursive subsampling to evaluate non-causality among

the assets. Let  be a bivariate series then we may define h-step-ahead VAR as:

A1

where  represent the white noise and  represent the coefficients characterized as:

A2

The following condition must be satisfied to demonstrate no h-step-ahead flow of linear causality

from  to , . If there is no 1-step-ahead causality from  to , then there is

no h-step-ahead causality from  to  (Theorem 2.1, Hill, 2007). Alternatively, there would be

causal flow across all horizons from  to  if there is causality at .

A.2. Nonparametric Causality Test:

 (D&P) causality test is an extension of the nonparametric

nonlinear causality test of Hiemstra and Jones (1994) (H&J). D&P has contributed to the literature

by reducing the potential bias of over rejection non-causality null-hypothesis of two variables of

the H&J test. Let  and  represent two variables lnBRENT and lnCEI. The null hypothesis for

D&P can be re-written as follows:



A3

where  is the joint probability density function of X and Y.  and  are the

marginal density functions of X and Y, respectively.

Under the null, the test statistic can be written as:

A4

For  the test statistic follows standard normal distribution

as:

A5

. The null hypothesis is rejected if, for

a given , the L.H.S of equation 9 is too large.



Table A1: Threshold cointegration summary
Variables and
Sample Subperiods Pre&at&post

-crisis
Pre&at&post-crisis-pre-

COVID
At&post-

crisis

At&post-
crisis-pre-
COVID

Post-
crisis

Post-
crisis-pre-
COVID

At crisis
(Daily
data)

Pre-
crisis

lnBRENT & lnCEI ** ** ** *
lnWTI & lnCEI ** ** ** *
lnS&POI & lnCEI *
lnWTI_F1 & lnCEI ** ** **
lnWTI_F2 &lnCEI
lnWTI_F3 &lnCEI ** **
lnWTI_F6 &lnCEI **
lnWTI_F9 & lnCEI
lnWTI_F12&lnCEI

Notes: The table presents the results of threshold cointegration (SupLM test) for different variants of crude oil price, its futures with clean energy index. *, **
indicate the statistical significance at 10% and 5% level. The variable descriptions are provided in Table A1.



Table A2: Seo (2006, 2011) TVECM-three-regime results

lnBRENT (Y)Vs lnCEI (X) lnWTI (Y)Vs lnCEI (X)
Regime I Regime II Regime III Regime I Regime II Regime III

t t t t t t t t t t t t

Panel A: Pre&at&post-crisis-pre-COVID
ECT * * ** ***

Constant * * ** * **
Y(t-1) *** *** ***
X(t-1) *** *** *** ** ** ***

%Obs 20% 11% 69% 31% 5% 64%
Panel B: At&post-crisis-pre-COVID

ECT *** * *
Constant *** * *

Y(t-1) *** *** ***
X(t-1) * *** *** ** *** ***

%Obs 5% 6% 89% 5% 6% 89%
t-1 1 - 1 t-1 2 2 1

2 t-1 = Yt-1  C Xt-1; C is the cointegrating parameter. In the case of BRENT and CEI for Pre&at&post-crisis-pre-COVID, th
e threshold values are (-0.7772 -0.2347), and the cointegrating parameter is 0.9521. The values for other cases are not produced here to maintain brevity. The lag
structure has been selected based on the lowest AIC and SC criteria.



Table A3: Causal dynamics of TVECM

Note:
This table presents the results of two-regime TVECM estimates. The lag structure has been selected based on the lowest AIC and SC criteria. ***, ** and * indicate
rejection of null hypothesis at the 1%, 5%, and 10% significance level. Y|X implies that variable X Granger-causes variable Y and X|Y implies that variable Y
Granger-causes variable X. Y variables are in the columns, the first difference in variables.

Pre&at&post-crisis Pre&at&post-crisi-
pre-COVID

At&post-crisis-pre-
COVID

Post-crisis-pre-
COVID

At crisis (Daily
data) Pre-crisis

Y-variables X-Variable: lnCEI

X|Y Y|X X|Y Y|X X|Y Y|X X|Y Y|X X|Y Y|X X|Y Y|X
Normal Regime

lnBRENT ** ** * ** **
lnWTI ** ** **
lnS&POI **
lnWTI_F1 ** * **
lnWTI_F3 **
lnWTI_F6

Extreme Regime
** ** ** **
** ** **

**
** ** **

**
** **



Table A4: Threshold cointegration adjusted for control variables

Pre&at&post-crisis-
pre-COVID

At&post-
crisis-pre-
COVID

Post-crisis-
pre-COVID Pre-crisis

lnBRENT&CO2 NTC

NTC

lnBRENT&UNCERTAINTY ** ** **
lnBRENT&SPXVOL ** **
lnWTI&CO2 NTC
lnWTI& UNCERTAINTY ** ** **
lnWTI&SPXVOL ** ** **
lnCEI&CO2 NTC
lnCEI&UNCERTAINTY ** ** **
lnCEI&SPXVOL ** NTC

Notes: The table represents the results of threshold cointegration of BRENT, WTI, and CEI residuals with control variables. ** shows the statistical significance
of threshold cointegration at the 5% level. The blank cell implies threshold cointegration is statistically insignificant. NTC: No threshold cointegration exists.

Table A5: Causal dynamics after adjusting for control variables in TVECM-RESIDUALS-VAR

Uncertainty adjusted for SPX Volatility adjusted for

Pre&at&post-crisis-
pre-COVID

At&post-crisis-
pre-COVID

Post-crisis-pre-COVID Pre&at&post-crisis-pre-
COVID

At&post-crisis-
pre-COVID

Post-crisis-pre-COVID

X-Variable: lnCEI
Y-variables X|Y Y|X X|Y Y|X X|Y Y|X X|Y Y|X X|Y Y|X X|Y Y|X

Normal Regime

lnBRENT ** ** ** * NA

lnWTI
Extreme Regime

lnBRENT ** ** ** NA
lnWTI

Notes: The table represents the causal dynamics of BRENT and WTI residuals with CEI residuals after adjusting for uncertainty and SPX volatility. NA: Not
applicable, as the threshold cointegration does not hold true. *, ** indicate the statistical significance at 10% and 5% level, respectively.



Table A6: TVECM regime selection tests
Panel A: BBC-SETAR test

Max Wald Test Pre&at&post-
crisis-pre-COVID At&post-crisis-pre-COVID Post-crisis-pre-

COVID Pre-crisis

lnBRENT 17.2524* 18.0047* 16.0206 5.036
lnCEI 14.4113 17.8647* 14.2243 12.1964
lnWTI 18.0452* 18.6707** 13.7713

lnS&OPI 11.5428
lnWTI_F1 17.7415* 13.9022
lnWTI_F3 18.4775**
lnWTI_F6 16.6138*

Panel B: KapShin test

Avg(W) Test Pre&at&post-
crisis-pre-COVID At&post-crisis-pre-COVID Post-crisis-pre-

COVID Pre-crisis

lnBRENT 0.0679 0.0476 0.0333 0.202
lnCEI 0.029 0.0654 0.0165 0.0566
lnWTI 0.0563 0.0355 0.0168 0.2754

lnS&OPI 0.2748
lnWTI_F1 0.0502 0.0131
lnWTI_F3 0.0534

lnWTI_F6 0.0456
Note: The null hypothesis of unit root proposed by Bec, Ben Salem and Carrasco (BBC) (Bec et al., 2004) is H0:

L H M against H1 L H M imes respectively. It
tests for unit root against a symmetric three regime Self Exciting Threshold Autoregressive (SETAR) model.  The
critical values for the
orders. KapShinTest tests for the presence of unit root against a stationary three regime SETAR alternative with
random walk in the inner regime.
Critical values for KapShin test is 0.90, 0.95, and 0.99, and the Avg(W) values are 6.01, 10.94, and 42.30,
respectively.


