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A class of sectorial relations and the associated
closed forms

S. Hassi and H.S.V. de Snoo

Dedicated to V.E. Katsnelson on the occasion of his 75th birthday

Abstract. Let T be a closed linear relation from a Hilbert space ) to a Hilbert
space R and let B € B(R) be selfadjoint. It will be shown that the relation
T*(I+4iB)T is maximal sectorial via a matrix decomposition of B with respect
to the orthogonal decomposition $) = dom 7" ®mul T'. This leads to an explicit
expression of the corresponding closed sectorial form. These results include the
case where mul 7 is invariant under B. The more general description makes it
possible to give an expression for the extremal maximal sectorial extensions
of the sum of sectorial relations. In particular, one can characterize when the
form sum extension is extremal.

Mathematics Subject Classification (2000). Primary 47B44; Secondary 47A06,
47A07, 47B65.

Keywords. Sectorial relation, Friedrichs extension, Krein extension, extremal
extension, form sum.

1. Introduction

A linear relation H in a Hilbert space ) is said to be accretive if Re (h',h) > 0,
{h,h'} € H. Note that the closure of an accretive relation is also accretive. An
accretive relation H in $ is said to be mazimal accretive if the existence of an
accretive relation H' in § with H C H’ implies H' = H. A maximal accretive
relation is automatically closed. In a similar way, a linear relation H in a Hilbert
space $) is said to be sectorial with vertex at the origin and semi-angle o, a €
0,7/2), if

[Im (h', k)| < (tana)Re (W', h), {h,h'} € H. (1.1)

The second author thanks the University of Vaasa for its hospitality during the preparation of
this work.
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The closure of a sectorial relation is also sectorial. A sectorial relation H in a
Hilbert space $ is said to be mazimal sectorial if the existence of a sectorial
relation H' in  with H C H' implies H' = H. A maximal sectorial relation is
automatically closed. Note that a sectorial relation is maximal sectorial if and only
if it is maximal as an accretive relation; see [6].

A sesquilinear form t = t[-, -] in a Hilbert space ) is a mapping from dom t C $
to C which is linear in its first entry and antilinear in its second entry. The adjoint
t* is defined by t*[h, k] = t[k, h], h, k € dom ¢; for the diagonal of t the notation t[']
will be used. A (sesquilinear) form is said to be sectorial with vertex at the origin
and semi-angle «, o € [0,7/2), if

[ti[h]| < (tana) t.[h], h € domt, (1.2)
where the real part t. and the imaginary part t; are defined by
t t* t— ¢
ST iy
A sesquilinear form will be called a form in the rest of this note. Observe that

the form t, is nonnegative and that the form t; is symmetric, while t =1t, +it;. A
sectorial form t is said to be closed if

hp = h, th, —hp] =0 = hedomt and tfh, —h]—0.

t domt, = domt; = dom t. (1.3)

A sectorial form t is closed if and only if its real part t. is closed; see [7].
The connection between maximal sectorial relations and closed sectorial forms
is given in the so-called first representation theorem; cf. [1], [4], [7], [8].

Theorem 1.1. Let t be a closed sectorial form in a Hilbert space $) with vertex at
the origin and semi-angle «, o € [0,7/2). Then there exists a unique mazimal
sectorial relation H in $) with vertex at the origin and semi-angle o in §) such that

dom H C domt, (1.4)
and for every {h,h'} € H and k € domt one has
tlh, k) = (W, k). (1.5)

Conversely, for every mazximal sectorial relation H with vertex at the origin and
semi-angle o, « € [0,7/2), there exists a unique closed sectorial form t such that
(1.4) and (1.5) are satisfied.

This result contains as a special case the connection between nonnegative
selfadjoint relations and closed nonnegative forms. The nonnegative selfadjoint re-
lation H, corresponding to the real part t, of the form t is called the real part of
H; this notion should not to be confused with the real part introduced in [6].

In the theory of sectorial operators one encounters expressions T*(I + iB)T
where T is a linear operator from a Hilbert space $ to a Hilbert space & and
B € B(R) is a selfadjoint operator. In the context of sectorial relations the operator
T may be replaced by a linear relation T'. A frequently used observation is that
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when T is a closed linear relation and the multivalued part mul7 is invariant
under B, then the product is a maximal sectorial relation; cf. [4]. However, in fact,
the relation

T*(I +iB)T (1.6)

is maximal sectorial for any closed linear relation T'. This will be shown in this note
via a matrix decomposition of B with respect to the orthogonal decomposition $) =
dom T*®mul T'. In addition the closed sectorial form corresponding to T*(I+iB)T
will be determined. The main argument consists of a reduction to the case where
T is an operator. For the convenience of the reader the arguments in the operator
case are included. Note that if T is not closed, then T*(I + ¢B)T is a sectorial
relation which may have maximal sectorial extensions, such as T*(I +iB)T** and
some of these extensions have been determined in [5]; cf. [10].

It is clear that the sum of two sectorial relations is a sectorial relation and
there will be maximal sectorial extensions. In [5] the Friedrichs extension has been
determined in general, while the Krein extension has been determined only under
additional conditions. As an application of the above results for the relation in
(1.6) the Krein extension and, in fact, all extremal maximal sectorial extensions
of the sum of two sectorial relations will be characterized in general. With this
characterization one can determine when the form sum extension is extremal.

2. A preliminary result

The first case to be considered is the linear relation T*(I 4 ¢B)T, where T a
closed linear operator, which is not necessarily densely defined, and B € B(R) is
selfadjoint. In this case one can write down a natural closed sectorial form and
verify that T*(I + ¢B)T is the maximal sectorial relation corresponding to the
form via Theorem 1.1.

Theorem 2.1. Let T' be a closed linear operator from a Hilbert space §) to a Hilbert
space R and let the operator B € B(R) be selfadjoint. Then the form t in $) defined

by

tlh,k] = (I +iB)Th,Tk), h,k € domt=domT, (2.1)
is closed and sectorial with vertex at the origin and semi-angle o < arctan || B||
and the maximal sectorial relation H corresponding to the form t is given by

H=T*I+iB)T, (2.2)

with mul H = mulT* = (domT)*. A subset of domt = domT is a core of the
form t if and only if it is a core of the operator T. Moreover, the nonnegative
selfadjoint relation H, corresponding to the real part (tg), of the form t is given

by
H, = T*T. (2.3)
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Proof. Tt is straightforward to check that t in (2.1) is a closed sectorial form as
indicated, since

t,[h, k] = (Th,Tk), 4[h,k] = (BTh,Tk).

Therefore, |t;[h]| = |(BTh,Th)| < ||B||||Th||? = || B||t:[h], so that t is closed and
sectorial with vertex at the origin and semi-angle o < arctan || B||. Moreover, since
T is closed, it is clear that t,. and hence t is closed.

Now let {h,h'} € T*(I +iB)T, then there exists ¢ € & such that

{h,o} eT, {(I+iB)p,h'} €T,
from which it follows that
(W', h) = (0, 0) +i(Bep, @)
Consequently, one sees that
Im ('h)| = (B, ¢)| < 1B |¢ll* = | B]| Re (h', ),

which implies that T*(I + ¢B)T is a sectorial relation with vertex at the origin
and semi-angle o < arctan || B||. Furthermore, observe that the above calculation
also shows that mul7T*(I +iB)T = mul T*.

To see that T*(I + ¢B)T is closed, let {h,,h.} € T*(I + iB)T converge to
{h,h'}. Then there exist ¢,, € K such that

{hn, on} €T, {(I+iB)pn,hy} €T,

and the identity Re (h/,, hy,) = ||@n | shows that (p,,) is a Cauchy sequence in &,
so that ¢, — ¢ with ¢ € & Thus

{hn,on} = {0}, {(I +iB)gn, hy,} = {(I +iB)p, I}

Since T' and T™* are closed, one concludes that {h, ¢} € T and {(I+iB)p,h'} € T*,
which implies that {h,h'} € T*(I +iB)T. Hence T*(I + iB)T is closed.

Now let H be the maximal sectorial relation corresponding to t in (2.1).
Assume that {h,h'} € H, then for all k € domt=domT

tlh,k] = (W' k) or ((I+iB)Th,Tk)= (N k),
which implies that
{(I+iB)Th,h'} € T* or {h,h'}e€T*(I+iB)T.

Consequently, it follows that H C T*(I+iB)T. Since T*(I +iB)T is sectorial and
H is maximal sectorial, it follows that H = T*(I + iB)T. In particular, one sees
that the closed relation T*(I +4B)T is maximal sectorial. O

With the closed linear operator T' from £ to & and the selfadjoint operator
B € B(8), consider the following matrix decomposition of B

_ (Baa Bap\  (ker T* ker T*
o= be): (r) - () @)
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Then it is clear that
tlh, k] = (I +iB)Th,Tk) = (I +iBy)Th,Tk), h,h € domt=domT, (2.5)

which shows that only the compression of B to ran7 plays a role in (2.1). In
applications involving Theorem 2.1, it is therefore useful to recall the following
corollary.

Corollary 2.2. Let T’ be a closed linear operator from the Hilbert space $) to a
Hilbert space & and let the operator B’ € B(R&') be selfadjoint. Assume that the
form t in Theorem 2.1 is also given by

tlh,k] = (I +iB)T'h,T'k), h,k € domt=domT".
Then there is a unitary mapping U from TanT onto tanT’, such that
T'=UT, By, =UBwU",

where By, and By, stand for the compressions of B and B’ to tanT and TanT’,
respectively.

Proof. By assumption ((I +iB’)T"h,T'k) = (I +iB)Th,Tk) for all h, k € dom .
This leads to

(T'h,T'k) = (Th,Tk) and (B'T'h,T'k) = (BTh,Tk)

for all h, k € domt. Hence the mapping Th + T’h is unitary, and denote it by U.
Then 77 = UT and it follows that (B"T'h,T'k) = (BU*T'h,U*T'k). O

3. A matrix decomposition for 7*(I + iB)T

Let T be a linear relation from $) to & which is closed; observe that then the
subspace mul T is closed. The adjoint T* of T is the set of all {h,h'} € & x § for
which

(W, f)y=(h,f) forall {f f'}eT.
Hence, the definition of T* depends on the Hilbert spaces $) and K in which T is
assumed to act. Let K have the orthogonal decomposition

RA=domT* ®mulT, (3.1)

and let P be the orthogonal projection onto dom 7. Observe that PT C T, since
{0} x mulT C T. Therefore T* C (PT)* = T*P, where the last equality holds
since P € B(R). Then one has

(PT)* =T* & (mulT x {0}). (3.2)

The orthogonal operator part Ty of T is defined as Ty, = PT. Hence Ty is an
operator from the Hilbert space $) to the Hilbert space 8 and Ty C T. Note that
ranTy C domT™* = RS mulT. Thus one may interpret T; as an operator from the
Hilbert space $ to the Hilbert space dom 7™ and one may also consider the adjoint
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(Ts)™ of Ty with respect to these spaces. It is not difficult to see the connection
between these adjoints: if {h,h'} € & x §, then

{h,W'}yeT* & {hNh'}e(1y)". (3.3)

The identity (3.2) shows the difference between (T3)* and (73)*.
Let T be a closed linear relation from a Hilbert space $ to a Hilbert space &
and let B € B(R) be selfadjoint. In order to study the linear relation

T*(I +iB)T,

decompose the Hilbert space £ as in (3.1) and decompose the selfadjoint operator
B € B(R) accordingly:

_ (Byy B\  (domT* dom T*
b= (3;2 BQQ> ' <mu1T> - <mulT ) ' (34)
Here the operators By; € B(domT*) and Bay € B(mulT) are selfadjoint, while
Biz € B(mulT,domT™) and B}, € B(dom 7™, mulT).

By means of the decomposition (3.4) the following auxiliary operators will
be introduced. First, define the operator Cy € B(dom 7™*) by

Co = I + Bio(I + B3,) ' B}s. (3.5)

Observe that Cy > I and that (Cp)~! belongs to B(dom 7*) and is a nonnegative
operator. Next, define the operator C € B(dom T*) by

c=05? [Bn — Bio(I + B%,) 2 Boo(I + B%,) 2 BL,| €5 2, (3.6)
which is clearly selfadjoint.

Lemma 3.1. Let T be a closed linear relation from a Hilbert space $) to a Hilbert
space R, let T be the orthogonal operator part of T', and let the selfadjoint operator
B € B(R) be decomposed as in (3.4). Let the operators Cy and C be defined by
(3.5) and (3.6). Then

T*(I +iB)T = (T,)*Co/*(I +iC)CY* Ty, (3.7)
and, consequently, T*(I +iB)T is mazimal sectorial and
mul7*(I 4+ ¢B)T = mul T* = mul (T3)*. (3.8)

Proof. In order to prove the equality in (3.7), assume that {h,h'} € T*(I +iB)T.
This means that

{h,p} €T and {(I+iB)p,h'} €T* (3.9)
for some ¢ € K. Decompose the element ¢ as
w=p1+es, ¢ edomT” ps €mulT. (3.10)
Since {0, p2} € T, it is clear that
{h,o} €T <& {h,p1}eTs. (3.11)
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Using (3.10) and the above decomposition (3.4) of B, one observes that

) I+ iB11)¢1 + iBiawe /
I+iB)p '} =4 (L . e
{I+iB)e, I} { (2312901 + (I +iBa2)p2

which implies that the condition {(I +iB)p,h'} € T* is equivalent to

{ {(I+iB11)p1 +iBiaps, W'} € T,
iBYop1 + (I +iBa2)p2 =0,

or, what is the same thing,

{[I + iBll + Blg(I + ing)_lBiKQ]gOl, h/} (S T*,
Y9 = —Z(I + ’L.ng)_lBib(pl.

Due to the definitions (3.5) and (3.6) and the identity
(I +iBa2) ™" = (I + B3,) "3 (I — iBa)(I + B},) %,

(3.12)

observe that
I +iBy1 + Bio(I +1iBas) ' B,
= Co +i[Bi1 — Bis(I + B3,) ™2 Bas(I + B3,) 2 B
— (1 +i0)Cy.
Therefore, it follows from (3.12), via the equivalence in (3.3), that
ey o (OGRS o
Combining (3.11) and (3.13), one sees that
(b, W'} € ()X Cy*(I +iC)Cy T,
Conversely, if this inclusion holds, then there exists ¢; € dom T, such that
(hpy €Ty and {Cy/*(I +iC)Cy* o1, '} € (Ty)*.
Then define o = —i(I + iBag) ' Biyp1, so that ¢y € mulT. Furthermore, define
© = @1 + 2. Hence {h, ¢} € T, and it follows from (3.13) that
(h, W'} € T*(I + iB)T.
Therefore one can rewrite 7% (I + ¢B)T in the form (3.7).

1
Observe that Cj Ty is a closed linear operator from the Hilbert space $ to
the Hilbert space dom 7™ whose adjoint is given by

(CaPT) " = (Ty)* Cp/%. (3.14)

Hence, by Theorem 2.1 (TS)XCé/2(I + iC)CS/zTS is a maximal sectorial relation
in $ and by the identity (3.7) the same is true for 7*(I +iB)T.

The statement in (3.8) follows by tracing the above equivalences for an ele-
ment {0, 7'} O
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Remark 3.2. Let ¢ = 1 + p2 € R be decomposed as in (3.10). Then one has the
following equivalence:

(I+iB)pedomT* & (I+iB)p=Cy/*(I+iC)Cy*p1.
To see this, let n = (I 4+ iB)¢. Then n € dom T™* if and only if

I+iBll iBlz 301 _ T}
iBfy  I+1iBy) \¢2) \0)’

where dom T is interpreted as the subspace dom T x {0} of &. Now apply (3.13).

4. A class of maximal sectorial relations and associated forms

The linear relation T*(I 4 iB)T is maximal sectorial for any selfadjoint B €
B(R) and any closed linear relation 7" from $) to 8. Now the corresponding closed
sectorial form will be determined. This gives the appropriate version of Theorem
2.1 in terms of relations. In fact, the general result is based on a reduction via
Lemma 3.1 to Theorem 2.1.

Theorem 4.1. Let T be a closed linear relation from a Hilbert space $ to a Hilbert
space R and let the selfadjoint operator B € B(R) be decomposed as in (3.4). Let
the operators Cy and C be defined by (3.5) and (3.6). Then the form t defined by

t[h, k] = (I +iC) CZ Ty h, C2To k), h,k € domt = domT, (4.1)
is closed and sectorial with vertex at the origin and semi-angle v < arctan ||C||.
Moreover, the mazimal sectorial relation H corresponding to the form t is given
by

H = (T,)* Co/*(I +iC)Cy/* Ty = T*(I + iB)T. (4.2)
A subset of domt = domT is a core of the form t if and only if it is a core of

the operator Ty. Moreover, the nonnegative selfadjoint relation H, corresponding
to the real part (tg), of the form t is given by

H, = (Ty)* CoTs.

1
Proof. Since CjTs is a closed linear operator from the Hilbert space ) to the
Hilbert space dom T™*, Theorem 2.1 (with K replaced by domT*, B by C, and T

by C’é / *T,) shows that the form t in (4.1) is closed and sectorial with vertex at the
origin and semi-angle v < arctan||C||. Moreover, the maximal sectorial relation
associated with the form t is given by

(COPT) (I +iC)CYPTy = (1)< Cl* (1 + ic)cl/* T,

cf. (2.1), (2.2), and (3.14). The identities in (4.2) are clear from Lemma 3.1. The
assertion concerning the core holds, since the factor C is bounded with bounded
inverse. The formula (4.2) shows that

(tr)e[h K] = (CZTuh, CETok), h,k € domt = domT,
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and hence H, = (C’(%/2TS)XC’3/2TS = (Ty)* CoTs (cf. the discussion above). O

Recall that if {h, h'} € T*(I+iB)T, then {h, ¢} € T and {(I+iB)p,h'} € T*.
The last inclusion implies the condition (I +iB)p € domT* C dom T, giving rise
to w9 = —i(I + iBay) ' Biyp1. Thus, for instance, when B = diag (B11, B22),
it follows that ¢o = 0, so that it is immediately clear that v < arctan| B,
independent of Bss. Note that the following assertions are equivalent:

(i) B = diag(B11,B2);
(i) Cp = I

(iv) mulT is invariant under B,

in which case C' = Bj;. Hence, if mulT is invariant under B, i.e., if any of the
assertions (i)—(iv) hold, then Theorem 4.1 gives the following corollary, which
coincides with [4, Theorem 5.1]. In the case where mul7T = {0} the corollary
reduces to Theorem 2.1.

Corollary 4.2. Let T be a closed linear relation from a Hilbert space $) to a Hilbert
space R, let Ty be the orthogonal operator part of T, and let mulT be invariant
under the selfadjoint operator B € B(R), so that B = diag (Bi1, Ba2). Then the
form t defined by

th, k] = (I +iB11)Tsh, T.k), h,k € domt= domT,

is closed and sectorial with vertex at the origin and semi-angle v < arctan || By ||.
Moreover, the maximal sectorial relation H corresponding to the form t is given

by
H = (T)*(I +iB11)Ts = T*(I +iB)T.
In the case that mulT is not invariant under B, one has Cy # I, and the

formulas are different: for instance, the real part (tg), in Theorem 4.1 is of the
form

(tz)[ho K] = (CETuh, CETLk), h,k € domt = dom T, = domT.
Example 4.3. Assume that By # 0 and
Bi1 = Bio(I + B3,) "2 Bao(I + B3,) "% By,

so that C = 0. In this case the maximal sectorial relation H = T*( 4+ iB)T in
Theorem 4.1 is selfadjoint, i.e., H = H, and the associated form t is nonnegative.
On the other hand, with such a choice of B the operator part of T' determines
the maximal sectorial relation (T5)*(I + iB)Ts with semi-angle arctan || By1|| > 0,
while T*(I 4 iB)T has semi-angle v = 0.
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5. Maximal sectorial relations and their representations

Let H be a maximal sectorial relation in $) and let the closed sectorial form tg
correspond to H; cf. Theorem 1.1. Since the closed form ty is sectorial, one has
the inequality

|(tm)ih]| < (tan @) (tw):[h], h € domt, (5.1)

and in this situation the real part (tg), is a closed nonnegative form. Hence by
the first representation theorem there exists a nonnegative selfadjoint relation H,,
the so-called real part of H, such that dom H, C dom (tzr), = domty and

(ta)clh, k] = (W', k), {h,h'} € Hy, k€ dom (ty), = domty.

This real part H,, not to be confused with the real part introduced in [6], will play
an important role in formulating the second representation theorem below. First
the case where H is a maximal sectorial operator will be considered, in which case
H is automatically densely defined; see [7].

Lemma 5.1. Let H be an mazimal sectorial operator in ), let the closed sectorial
form ty correspond to H via Theorem 1.1, and let H, be the real part of H. Then
there exists a unique selfadjoint operator G € B(9) with |G|| = tan«, of the form

0 0 ker H, ker H,
G= (O G(,b> ’ (er> - (rarlHr)’ (5'2)
such that
tulh K] = (I +iG)(H,)*h, (H,)*k), h,k€domty =domH?.  (5.3)

Moreover, the corresponding mazimal sectorial operator H is given by
H = (H,)*(I +iG)(H,)?,
with mul H = mul H,.
Proof. The inequality
(b )ilh, K]J2 < C[hIG k] = CIUHZRI||H2 K], b,k € dom,
shows the existence of a selfadjoint operator G in $) © ker H such that
(tw)i[h, k] = (G(Hy)%h, (H,)%k), h,k € dom (H,)?. (5.4)

Extend G to all of $ in a trivial way, so that the same formula remains valid;
see Corollary 2.2. It follows from the decomposition t = t, + it;, cf. (1.3), and the
identities (5.5) and (5.4), that

tg = (ta): +i(ta)i,
so that

tur = b, k) = ((H,)2 by ()2 ) + (G H, )2 By (HL)Z ).
This last identity immediately gives (5.3). The rest follows from Corollary 4.2. O
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Now let H be a maximal sectorial relation, let H, be its real part, and let
(H,)s be its orthogonal operator part. Then one obtains the representation

1

(t)el, k) = () b (H,)o)ER), bk € dom (t), = dom (H,)o)E,  (5.5)

cf. Theorem 2.1. Now apply Corollary 4.2 and therefore one may formulate the
second representation theorem as follows.

Theorem 5.2. Let H be a maximal sectorial relation in 9, let the closed sectorial
form tg correspond to H via Theorem 1.1, and let H, be the real part of H. Then
there exists a selfadjoint operator G € B($)) with ||G|| = tana, such that G is
trivial on ker H, @ mul H,, and

1 1

tulh, k] = (I +iG)((Hy)s) b, (Hy)s) k), h,k € domty = dom HE.  (5.6)
Moreover, the maximal sectorial relation H is given by
H = (((H:)s)?) (I +iG)((Hr)s)?, (5.7)
with mul H = mul H,.

Next, it is assumed that H is a maximal sectorial relation of the form H =
T*(I4iB)T, where T is a closed linear relation from a Hilbert space $) to a Hilbert
space R and the operator B € B(R) is selfadjoint. Let the operators Cy and C be
defined by (3.5) and (3.6), then

H = ()" Cy*(I +i0)Cy* T.,
while the corresponding closed sectorial form is given
k] = (I +iC) C2 Ty h,CETy k), hk € domt = domT.
To compare these expressions with (5.6) and (5.7), observe that
(Ci T, CTak) = (H))) s ((H,)) )

and
(CCET, h, CETL k) = (G((H,))Eh, ((H,)) k).

It is clear from (4.1) that only the (selfadjoint) compression of C' to mCé/ °T,
contributes to the form (4.2), so that it is straightforward to set up a unitary
mapping; cf. Corollary 2.2.

6. Extremal maximal sectorial extensions of sums of maximal
sectorial relations

Let H; and H5 be maximal sectorial relations in a Hilbert space §). Then the sum
Hy + Hs is a sectorial relation in $ with

dom (Hy + Hs) = dom Hy Ndom Ho,
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so that the sum is not necessarily densely defined. In particular, H; + Hs and its
closure need not be operators, since

mul (Hy + Hy) = mul H; + mul H,. (6.1)

To describe the class of extremal maximal sectorial extensions of H; + Hy some
basic notations are recalled from [5], together with the description of the Friedrichs
and Krein extensions

(Hi+ Ho)p and (Hy + Ho)gk

of Hi+ H», respectively. In order to describe the whole class of extremal extensions
of Hy + H> and the corresponding closed forms a proper description of the closed
sectorial form tx is essential. The results in Sections 3 and 4 allow a general
treatment that will relax the additional conditions in [5].

6.1. Basic notions
Let H; and Hs be maximal sectorial relations and decompose them as follows
1 ) 1 )
H; = A]? (I+sz)A]?, 1<j<2, (6.2)

where A; (the real part of H;), 1 < j < 2, are nonnegative selfadjoint relations in
$H and Bj, 1 < j <2, are bounded selfadjoint operators in £ which are trivial on
ker A; @ mul A;; cf. Theorem 5.2. Furthermore, if A; and As are decomposed as

Aj=Ajs ® Ajoo, 1<j<2

where Ao = {0} xmulA;, 1 < j <2, and Ajs, 1 < j < 2, are densely defined
nonnegative selfadjoint operators (defined as orthogonal complements in the graph
sense), then the uniquely determined square roots of A;, 1 < j < 2 are given by

A2 = AZ @ Aj, 1<j<2
Associated with Hy and Hs is the relation ® from $ x ) to $), defined by
1 .
o= {{{f L} i+ 5} Unfjyeal1<j<2}. (6.3)
Clearly, ® is a relation whose domain and multivalued part are given by

dom ® = domAlé X domAQ%, mul ® = mul H; + mul Hy.

The relation @ is not necessarily densely defined in $ x ), so that in general ®* is
a relation as mul ®* = (dom ®)+. Furthermore, the adjoint ®* of ® is the relation
from $ to H x 9, given by

@ = {{n (W 5)) : (hhjy € AT 1< <2} (6.4)

The identity (6.4) shows that the (orthogonal) operator part (®*)s of ®* is given
by:

(@) = {{n {5 m}}  (nmjyeaj 1<) <2} (6.5)

= {{nAAkh ALn}} hedom A} ndomAg}.
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The identities (6.4) and (6.5) show that
dom ®* = domAlé N domAé, mul ®* = mul H; x mul Hy, ran (®*)s = Fo,
where the subspace o C $ x §) is defined by
1 1 1 1
So = {{Afsh, A;Sh} . h € dom A? N dom AZ } . (6.6)

The closure of §g in H x $ will be denoted by §. Define the relation ¥ from $) to
H x H by

U= { {h, {Aih,Aih}} . h € dom H, N dom Hy } CHXOxH). (6.7
It follows from this definition that
dom ¥ = dom H; Ndom Hy, mul¥ = {0}, ran¥ = &,
where the space &, C ) x ) is defined by

¢o={{ais a5} fedomH ndomt; }. (6.8)
Observe that &y C Fo. The closure of &y in  x $ will be denoted by &. Hence,
¢C3g. (6.9)
Comparison of (6.5) and (6.7) shows
U C (D), (6.10)

and thus the operator U is closable and ¥** C (®*)s. It follows from dom ¥U* =
(mul ¥**)+ and mul ¥* = (dom ¥)=, that

dom¥* = $, mul¥* = (dom H; Ndom Hy) .
Next, define the relation K from £ x $ to $ by
K = {{I+iB)ALS (I +iB)ALSY, f{ + 13} (6.11)
[ +iB)ALS, f1} € AT {( +iB2)ALS, 3} € A3 )
C (Hx9H)xH.
Clearly, the domain and multivalued part of K are given by
dom K =9, mul K =mul (H; + Ha),
where
Dy = { {(I+iB)AY2f, (1 +iBo)AY?f} « f € dom Hy N dom Ha } . (6.12)
The closure of Dg in $ x $H will be denoted by D.

Lemma 6.1. The relations K, ®, and V satisfy the following inclusions:
KcdcCcvu, TCo*cCK™ (6.13)

Proof. To see this note that K C ® follows from (6.3) and (6.11), and that ¥ C ®*
follows from (6.4) and (6.7). Therefore, also ®* C K* and & C &** C U*. O
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6.2. The Friedrichs and the Krein extensions of H, + Hy

The descriptions of the Friedrichs extension and the Krein extension (Hy 4+ Ha)p
and (Hy+Hs) g of Hy+ Hs are now recalled from [5]. For this, define the orthogonal
sum of the operators B; and Bs in ) X §) by

B 0
Bg ;—Bl@BQ—<01 32).

The descriptions of (H; + Hs)r and (Hy + Hs) g incorporate the initial data on
the factorizations (6.2) of H; and Hs via the mappings ®, ¥, and K in Subsection
6.1. The construction of the Friedrichs extension was given in [5, Theorem 3.2],
where some further details and a proof of the following result can be found. The
new additions in the next theorem are the second representations for (Hy + Ha)p
and tp that will be needed in the rest of this paper.

Theorem 6.2. Let Hy and Hs be maximal sectorial and let U be defined by (6.7).
Then the Friedrichs extension of Hy + Hs has the expression

(Hy + Hy)p = U (I 4 iBg) U™ = U*C/2(I +iC)CY*Po(T**),.  (6.14)
The closed sectorial form tp associated with (Hy + Ha)p is given by

tplf,g] = (I +iBg) U™ f, 0™ g) = (Cy/*(I +iC)Cy/* Po (W), f, P (¥™),g),
(6.15)
for all f, g € domtp = dom ¥**.

Proof. As indicated the first expressions for (H; + Hz)p in (6.14) and tp in (6.15)
have been proved in [5, Theorem 3.2] and, hence, it suffices to derive the second
expressions in (6.14) and (6.15).

By definition, one has ran ¥ = &, (see (6.7), (6.8)), and by Lemma 6.1 one
has ¥ C U** C K*, which after projection onto ® = dom K yields

PoU** C PoK* = (K*),.

Notice that D¢ = dom K = (I + iBg)€&; (see (6.8), (6.12)). Since the operator
I 4+ iBg is bounded with bounded inverse, one has the equality

D = (I +iBg)€. (6.16)

It follows that the range of (I +iBg)¥** belongs to ©® = dom K. Now by Remark
3.2 this implies that for all f € dom U** one has the equality

(I + Ba)(U*)f = Co/*(I +iC)Ca/? Py (T**), f. (6.17)
This leads to
U*(I + iBe) U™ = U*CL/2(I +iC)CY/? Py (I7),,

which proves (6.14). Similarly by substituting (6.17) into the first formula for tp
and noting that P@Cé/ ?= Py, one obtains the second formula in (6.15). g
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Also the construction of the Krein extension for the sum Hi + Hs can be
found in [5, Theorem 3.2]. However, the corresponding form tx was described only
under additional conditions to prevent the difficulty that appears by the fact that
the multivalued part of (H; + Hs)x is in general not invariant under the mapping
Bg. Theorem 4.1 allows a removal of these additional conditions and leads to a
description of the form tx in the general situation.

For this purpose, decompose the Hilbert space $ x $ as follows

H x $H=domK & mul K*, (6.18)

and let P be the orthogonal projection onto dom K. Moreover, decompose the
selfadjoint operator Bg € B($) x $)) accordingly:

_ (By B\ (domKk dom K
Bo = (B;‘2 BQQ> ' <mu1K*> - <mu1K*> ' (6.19)
Next define the operator Cy € B(dom K*) by
Co = I + Bio(I + B3,) ' B}, (6.20)

and the operator C' € B(dom K*) by
C'=Cy % [Bu = Bua(l + BR) ™3 Buo(I + BYy) By | 6%, (6.21)
which is clearly selfadjoint.

Theorem 6.3. Let Hi and Hs be maximal sectorial relations in a Hilbert space
9, let K be defined by (6.11), and let Cy and C be given by (6.20) and (6.21),
respectively. Then the Krein extension of Hy + Hy has the expression

(Hy+ Hy)ic = K™(I +iBg)K* = (K*)s)* Co/*(I +iC)Cy/* (K*)s.
The closed sectorial form tx associated with (Hy + Ha)k is given by
ticlf, ) = (T +iC)Co > (K*)of,Cy*(K*)sg),  f, g € domtyc = dom K.

Proof. The first equality in the first statement is proved in [5, Theorem 3.2].
The second equality is obtained by applying Theorem 4.1 to the sectorial rela-
tion K**(I + iBg)K™.

The statement concerning the form tx is a consequence of this second rep-
resentation of (Hy + Hs)k, since 03/2(1(*)5 is a closed operator and hence one
can apply Theorem 2.1 to get the desired expression for the corresponding form
tx. |

The form tx described in Theorem 6.3 can be used to give a complete descrip-
tion of all extremal mazximal sectorial extensions of the sum H; + H,. Namely, a
maximal sectorial extension H of a sectorial relation S is extremal precisely when
the corresponding closed sectorial form tz is a restriction of the closed sectorial
form tx generated by the Krein extension Sk of S; see e.g. [4, Definition 7.7,
Theorems 8.2, 8.4, 8.5]. Therefore, Theorem 6.3 implies the following description
of all extremal maximal sectorial extensions of H; + Ho.
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Theorem 6.4. Let Hy and Hy be mazimal sectorial relations in $), let ¥ and K be
defined by (6.7) and (6.11), respectively, and let Pp be the orthogonal projection
from $ x $H onto ® = dom K. Then the following statements are equivalent:

(i) H is an extremal mazimal sectorial extension of Hy + Ha;
(i) H = R*(I +iC)R, where R is a closed linear operator satisfying
CY2Pou™ C R C CY*(K™),.

Proof. For comparison with the abstract results this statement will be proved by
means of the constructions used in [4]. Let S = H; + Hj then the sectorial relation
S gives rise to a Hilbert space g and a selfadjoint operator Bg € B($)g) such
that the Friedrichs extension Sr and the Krein extension Sk of S are given by

Sp=Q*(I+1iBs)Q"", trp=J"(I+iBg)J",
with corresponding forms
tr(f, 9l = (I +iBs)Q™ f,Q""g), f,g € domQ™,
and
telf.g] = (I +iBg)J"f,J"g), f,g € domJ";

see [4, Theorem 8.3]. Here Q : $) — $g is an operator and J : Hg — 9 is a densely
defined linear relation such that

JcQ", QcJ

in particular, the adjoint J* is an operator.
Recall from Theorem 6.3 that

ticlf 9] = (I +iC)Cy* (K7)sf, Gy (K7)sg),
while Theorem 6.2 gives
trlf.9) = (I +iBa) U™ f,U™g) = (Co/*(I +iC)Cy/* Po (¥™"). f, Po (¥™°),g).
Now apply [4, Theorem 8.4] and Corollary 2.2. |

6.3. The form sum construction

The maximal sectorial relations H; and Hs generate the following closed sectorial
form
(I+iB1)AZh, ALK) + (I +iBs)ALh, ALK), h,k € dom A7 Ndom AZ. (6.22)

Observe that the restriction of this form to dom ¥** is equal to

(R, U**k) = (I +iBy)ALh, AZE) + (I +iBy)ALh, AZK), h,k € dom U**,

(6.23)
since ¥** C (®*)g, cf. (6.5). Thus, the form in (6.22) has a natural domain which
is in general larger than dom U**.
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Theorem 6.5. Let Hy and Hs be maximal sectorial relations in $, let ® be given
by (6.3), and let € = clos &y and §F = closFo be defined by (6.8) amd (6.6). Then
the maximal sectorial relation
®**(I +iBg)®"
is an extension of the relation Hy + Hs, which corresponds to the closed sectorial
form in (6.22).
Moreover, the following statements are equivalent:
(i) @**(I + iBg)®* is extremal;
(i) ¢ =3.
Proof. The first statement is proved in [5, Theorem 3.5]. For the proof of the
equivalence of (i) and (ii) appropriate modifications are needed in the arguments
used in the proof of [5, Theorem 3.5]. The special case treated there was based
on the additional assumption that ® = &, where ® = dom K; a condition which
implies the invariance of mul K* under the operator Bg. In the present general
case such an invariance property cannot be assumed. Now for simplicity denote
the form sum extension of Hy + Hy briefly by H = &**(I + iBg)d*.
(i) = (i) Assume that H is extremal. Since € C § by (6.9), it is enough to
prove the inclusion § C €. By Theorem 6.4 and mul ®* = mul H; x mul H, one
sees

H = ((9*))*(I +iBg)(®*)s = R*(I +iC)R, (6.24)
for some closed operator R satisfying
CYPPoU* C R C CYP (K™, (6.25)

where Pop is the orthogonal projection of £ x $ onto ® = dom K. Recall that
(®*)s € @* C K* and hence Pyp(®*)s C PoK* = (K*)s. Moreover, one has
dom Pg (®*)s = dom (®*)s = dom R, since by assumption these two domains co-
incide with the corresponding joint form domain. Denoting R= Cy 1/ 2R, one has
dom R = dom Pg(®*), and (6.24) can be rewritten as

H = ((9")5)*(I +iBg)(®*)s = R*Cy/*(I +iC)CY/*R, (6.26)

where R satisfies PoU** C R C (K*)s. One concludes that Pp(®*)s = R, since
both operators are restrictions of (K*)s, and thus

((2")s)*Po = R". (6.27)
Now one obtains from (6.26) the equalities
(@) (I +iBa)(@), = R'C/*(I+iC)Cy”°R
= ((®")s)"PoCY*(1 +iC)CY*R
= ((29))"Cy”* (I +iC)Cy*R.
Hence, for every f € dom H one has

(I +iBg)(®%)sf — Cy/*(I +iC)Cy* Rf € ker (&))"
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Here C)/%(I 4+ iC)CY*Rf € ® = domK and ® = domK = (I + iBg)€; see
(6.16). Therefore, there exists ¢ € € such that Cé/z(l—l—iC)Cé/Qﬁf = (I +1iBg)ep.
On the other hand, (®*),f € § = tan (®*); = (ker ((®*)s)*)*, see (6.5), (6.6).

Since ¢ € € C §, this yields
(I +1iBg)(2%)sf = ¢), (2%)sf —¢) =0,
and thus (®*)sf — ¢ = 0. Consequently, for all f € dom H one has
(®*)sf € €.

Since dom H is a core for the corresponding closed form, or equivalently, the closure
of (®*)s dom H is equal to (*)s, the claim follows: § = Tan (*)s C €.

(ii) = (i) Assume that € = §. Then Fo = ran (P*)s C € and hence for all
f € dom (®*)s one has (I + Bg)(®*)sf € dom K. By Remark 3.2 this implies that

(I + Ba)(®)sf = Cy/*(I +iC)Cy/* Po (@), f. (6.28)

On the other hand, as shown above Pgp(®*); C PoK* = (K*),. Let R be the
closure of (K*)s|dom (®*)s. Then R* satisfies the identity (6.27). Since U** C
(®*)s (see (6.10)) one obtains PoW¥** C R. The identities (6.27) and (6.28) imply
that for all f € dom H the equalities

((2%)5)* (I + Be)(®)sf = ((2%)s)* PoCy/*(I +iC)Cy/* Po (®*)sf
= R*CY*(I +iC)C)* Ry

hold. Then the closed operator R = Céﬂﬁl satisfies the inclusions (6.25) as well as
the desired identity ((®*)s)*(I+Bg)(®*)s = R*(I+iC)R, and thus H is extremal,
cf. Theorem 6.4. g

Theorem 6.5 is a generalization of [5, Theorem 3.5], where an additional
invariance of mul K* under the operator Bg was used. Moreover, Theorem 6.5
generalizes a corresponding result for the form sum of two closed nonnegative
forms established earlier in [3, Theorem 4.1].

The present result relies on Theorem 4.1, where the description of the closed
sectorial form generated by a general maximal sectorial relation of the form H =
T*(I4iB)T where T is a closed relation. This generality implies that with special
choices of B the relation H can be taken to be nonnegative and selfadjoint, i.e.,
the corresponding closed form t becomes nonnegative; see Example 4.3.
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