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Spectral decompositions of selfadjoint relations
in Pontryagin spaces and factorizations of gen-
eralized Nevanlinna functions

Seppo Hassi & Hendrik Luit Wietsma

Dedicated to V.E. Katsnelson on the occasion of his 75th birthday

Abstract. Selfadjoint relations in Pontryagin spaces do not possess a spectral
family completely characterizing them in the way that is known to hold for
selfadjoint relations in Hilbert spaces. Here it is shown that a combination of
a factorization of generalized Nevanlinna functions with the standard spec-
tral family of selfadjoint relations in Hilbert spaces can function as a spectral
family for selfadjoint relations in Pontryagin spaces. By this technique addi-
tive decompositions are established for generalized Nevanlinna functions and
selfadjoint relations in Pontryagin spaces.

Mathematics Subject Classification (2000). Primary: 47B50; Secondary: 46C20,
47A10, 47A15.
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1. Introduction

It is well known that the class of generalized Nevanlinna functions can be realized
by means of selfadjoint relations in Pontryagin spaces (cf. Section 2.2 below). In [16]
it has been shown that there is a strong connection between the factorization result
for scalar generalized Nevanlinna functions and the invariant subspace properties
of selfadjoint relations in Pontryagin spaces. Here that approach is extended to the
case of operator-valued generalized Nevanlinna functions whose values are bounded
operators on a Hilbert space H; in what follows this class is denoted by Nκ(H),
where κ ∈ N refers to the number of negative squares of the associated Nevanlinna
kernel; see [11, 12]. More precisely, by combining the multiplicative factorization
for operator-valued generalized Nevanlinna functions established in [14] with the
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well-known spectral family results for selfadjoint operators in Hilbert spaces the
following additive decomposition is obtained.

Theorem 1.1. Let F ∈ Nκ(H) and let ∆ be a measurable subset of R ∪ {∞} or a
closed symmetric subset of C \ R. Then F can be written as F∆ + FR, where

(i) σ(F∆) ⊆ clos ∆ and int ∆ ⊆ ρ(FR);
(ii) F∆ ∈ Nκ∆

(H), FR ∈ NκR(H) and κ∆ + κR ≥ κ.

If ∂∆∩GPNT (F ) = (clos (∆) \ int (∆))∩GPNT (F ) = ∅, then the decomposition
may be chosen such that F∆ and FR do not have a generalized pole in common.
In this case, κ∆ + κR = κ.

In Theorem 1.1 ρ(F ) denotes the set of holomorphy of F ∈ Nκ(H) in C∪{∞}
and σ(F ) stands for its complement in C ∪ {∞}. For the definition of generalized
poles and generalized poles not of positive type (GPNTs), see Section 2.2 below.
It should be mentioned that Theorem 1.1 generalizes a result obtained for matrix-
valued generalized Nevanlinna functions by K. Daho and H. Langer in [2, Prop.
3.3].

For the proof of Theorem 1.1 spectral families for Pontryagin space selfad-
joint relations are replaced by factorizations of generalized Nevanlinna functions
in combination with the standard spectral decompositions of selfadjoint Hilbert
space operators (or relations); this is the main contribution of this paper. Such an
approach is needed because spectral families for Pontryagin space selfadjoint rela-
tions do not exist in an appropriate form to establish Theorem 1.1; cf. [13]. This
approach can be extended to decompose for instance definitizable functions (and
operators) in a Krĕın space setting. Starting from the essentially multiplicative
representation of an definitizable function F in [10, Thm. 3.6] one can for exam-
ple show that F can be written as the sum of two definitizable functions F+ and
F−, where F+ has no points of negative type and F− has no points of positive type.

The intimate connection between generalized Nevanlinna functions and self-
adjoint relations in Pontryagin spaces, see e.g. Section 2.2 below, means that the
following analogue of Theorem 1.1 holds for selfadjoint relations in Pontryagin
spaces. For the notation ENT (A) in the following theorem, see Section 2.1 below.

Theorem 1.2. Let A be a selfadjoint relation in a Pontryagin space {Π, [·, ·]} with
ρ(A) 6= ∅ and let ∆ be either a measurable subset of R∪{∞} or a closed symmetric
subset of C \ R. Then there exists a selfadjoint relation Ae in a Pontryagin space
{Πe, [·, ·]e} with gr(A) ⊆ gr(Ae) and a decomposition Π∆[+]ΠR of Πe such that

(i) {Π∆, [·, ·]} and {ΠR, [·, ·]} are Pontryagin spaces;
(ii) Π∆ and ΠR are Ae-invariant;

(iii) σ(Ae �Π∆
) ⊆ clos ∆ and int ∆ ⊆ ρ(Ae �ΠR).

If ∂∆ ∩ ENT (A) = ∅, then Ae and Πe can be taken to be A and Π, respectively,
and the decomposition can be taken such that

σp(A �Π∆) ∩ σp(A �ΠR) = ∅.
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In the particular case that ∆ is a closed symmetric subset of C \ R the de-
composition in Theorem 1.2 is directly obtained by means of Riesz projection
operators; see e.g. [1, Ch. 2: Thm 2.20 & Cor. 3.12]. However, Theorem 1.2 can-
not always be established by means of spectral families of selfadjoint relations in
Pontryagin spaces if ∂∆ ∩ ENT (A) 6= ∅. Indeed the eigenspaces of ENTs can be
neutral or even degenerate; in such cases the corresponding eigenvalues are critical
points and the spectral family might not be extendable to sets having these points
as their endpoints; cf. [13, Comments following Thm. 5.7].

To mention another example of decompositions included in Theorem 1.2 con-
sider ∆ = (−∞, a) ∪ (b,∞) ∪ {∞}, where a, b ∈ R \ ENT (A) and a < b. Then
Theorem 1.2 says that a selfadjoint relation in a Pontryagin spaces can be decom-
posed into an unbounded selfadjoint relation in a Pontryagin space and a bounded
selfadjoint operator in a Pontryagin space; for selfadjoint operators this last re-
sult can be found in [11]; see also the references therein. Note that intervals ∆ of
the given type naturally arise in connection with rational functions; for instance
when considering definitizable operators or the products of (generalized) Nevan-
linna functions with rational functions, see e.g. [8].

Finally the contents of the paper are shortly outlined. The first half of Sec-
tion 2 consists of an introduction to selfadjoint relations (multi-valued operators)
in Pontryagin spaces together with a short overview of minimal operator realiza-
tions of (operator-valued) generalized Nevanlinna functions. In the latter half of
this section we recall some results about how non-minimal realizations can be re-
duced to minimal ones and also consider the (minimality of the) realization for
the sum of generalized Nevanlinna functions. In Section 3 we first establish the
connection between a factorization of a generalized Nevanlinna function and the
spectral properties of its operator realization. This result is a key tool for using the
factorization of generalized Nevanlinna functions as a replacement for a spectral
decomposition of selfadjoint relations in Pontryagin spaces. Finally, in the second
and third subsections of Section 3 Theorems 1.1 and 1.2 are proven, respectively.

2. Preliminaries

The first two subsections contain introductions to (unbounded) operators or more
generally linear relations in Pontryagin spaces and (minimal) operator realizations
for generalized Nevanlinna functions, respectively. In the third subsection it is
shown how non-minimal realizations may be reduced to minimal ones. Finally, in
the fourth subsection the sum of generalized Nevanlinna functions is considered.

2.1. Linear relations in Pontryagin spaces

A linear space Π together with a sesqui-linear form [·, ·] defined on it, is a Pon-
tryagin space if there exists an orthogonal decomposition Π+ + Π− of Π such that
{Π+, [·, ·} and {Π−,−[·, ·]} are Hilbert spaces either of which is finite dimensional;
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here orthogonal means that [f+, f−] = 0 for all f+ ∈ Π+ and f− ∈ Π−. For
our purposes it suffices to consider only Pontryagin spaces for which Π− is finite-
dimensional; its dimension (which is independent of the orthogonal decomposition
Π+ + Π−) is the negative index of Π.

A (linear) relation H in {Π, [·, ·]} is a multi-valued (linear) operator whose
domain is a linear subspace of Π, denoted by domH, and which linearly maps each
element x ∈ domH to a subset Hx := H(x) of Π. (Graphs of) linear relations on
Π can be identified with subspaces of Π × Π; in what follows this identification
will tacitly be used. The linear subspace H(0) is called the multi-valued part of H
and is denoted by mulH.

A relation H is closed if (the graph of) H is a closed subspace of Π×Π. For
any relation H in {Π, [·, ·]}, its adjoint, denoted as H [∗], is defined via its graph:

grH [∗] = {{f, f ′} ∈ Π×Π : [f, g′] = [f ′, g], ∀{g, g′} ∈ grH}.

A relation A in {Π, [·, ·]} is symmetric if A ⊆ A[∗] and selfadjoint if A = A[∗].
An operator V from (a Pontryagin space) {Π1, [·, ·]1} to (a Pontryagin space)
{Π2, [·, ·]2} is isometric if [f, g]1 = [V f, V g]2 for all f, g ∈ domV . An isomet-
ric operator U from {Π1, [·, ·]1} to {Π2, [·, ·]2} is a standard unitary operator if
domU = Π1 and ranU = Π2.

For a closed relation H in {Π, [·, ·]}, the resolvent set, ρ(H), and the spectrum,
σ(H), are defined as usual:

ρ(H) = {z ∈ C : ker (H − z) = {0}, ran (H − z) = Π} and σ(H) = C \ ρ(H).

Moreover, the point spectrum σp(H) is defined as the set

σp(H) = {z ∈ C ∪ {∞} : ∃x ( 6= 0) ∈ Π s.t. {x, zx} ∈ gr(H)}.

These sets have the normal properties, see e.g. [4]. Below we also use the convention
that ∞ ∈ σp(H) if and only if mulH 6= {0} or, equivalently, 0 ∈ σp(H−1), where
H−1 stands for the inverse (linear relation) of H. Similarly,∞ ∈ ρ(H) means that
0 ∈ ρ(H−1) or, equivalently, that H is a bounded everywhere defined operator,
i.e., H ∈ B(Π).

A subspace L of Π is said to be invariant under a relation H with ρ(H) 6= ∅,
or H-invariant for short, if

(H − z)−1L ⊆ L, ∀z ∈ ρ(H).

Here (H − z)−1 ∈ B(Π) is defined via its graph as

gr((H − z)−1) = {{f ′ − zf, f} ∈ Π×Π : {f, f ′} ∈ gr(H)}.
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Recall that the spectrum and resolvent set σ(A) and ρ(A) of a selfadjoint
relation A in a Pontryagin space are symmetric with respect to the real line:

ρ(A) = ρ(A), σ(A) = σ(A) and σp(A) = σp(A). (2.1)

Moreover, if ρ(A) 6= ∅ then ρ(A) contains C \ R except finitely many points; see [4].

Finally α ∈ C ∪ {∞} is an eigenvalue not of positive type, or ENT for short,
of a selfadjoint relation A in a Pontryagin space, if there exists a non-trivial non-
positive A-invariant subspace L such that σ(A �L) = α. Recall that selfadjoint
relations in Pontryagin spaces possess at most finitely many ENTs, see e.g. [9,
Thm. 12.1’]. The set of all ENTs of a selfadjoint relation A in C∪{∞} is denoted
by ENT (A).

2.2. Minimal realizations of generalized Nevanlinna functions

The concept of an operator-valued generalized Nevanlinna function has been in-
troduced and studied by M.G. Krĕın and H. Langer; see [11, 12]. In particular,
with some additional analytic assumptions, operator-valued generalized Nevan-
linna functions were described as so-called Q-functions of symmetric operators in
a Pontryagin space. Those additional conditions were removed by allowing selfad-
joint relations in model spaces; cf. [3] for the case of matrix functions and [7] for
operator-valued functions.

If A is a selfadjoint relation in (a Pontryagin space) {Π, [·, ·]} with a nonempty
resolvent set ρ(A), C is a bounded selfadjoint operator in a Hilbert space {H, (·, ·)}
and Γ is an everywhere defined operator from H to Π, then F defined by

F (z) = C + z0Γ[∗]Γ + (z − z0)Γ[∗] (I + (z − z0)(A− z)−1
)

Γ, z, z0 ∈ ρ(A),
(2.2)

is a generalized Nevanlinna function. Conversely, if F is a generalized Nevanlinna
function, then there exist A = A[∗] with ρ(A) 6= ∅, Γ and C as above such that
(2.2) holds; in this case C + z0Γ[∗]Γ = F (z0)∗ = F (z0).

If (2.2) holds for some generalized Nevanlinna function F , then the pair
{A,Γ} realizes F (at z0). In particular, in the term realization the realizing space
{Π, [·, ·]} is suppressed; also the selection of the arbitrarily fixed point z0 is sup-
pressed when it doesn’t play a role. With a realizing pair {A,Γ} (at z0) we associate
a bounded operator-valued function Γz, called the γ-field associated with {A,Γ},
via

Γz :=
(
I + (z − z0)(A− z)−1

)
Γ, z ∈ ρ(A). (2.3)

Using the γ-field and the resolvent identity, (2.2) can be rewritten into a symmetric
form:

F (z)− F (w)∗

z − w
= Γ[∗]

w Γz, z, w ∈ ρ(A). (2.4)
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The pair {A,Γ} is said to realize F (as in (2.2)) minimally if

Π = c.l.s. {Γzh : z ∈ ρ(A), h ∈ H}.

For the existence of a minimal realization for any generalized Nevanlinna function
see e.g. [7, Thm. 4.2].

By means of a minimal realization the index of a generalized Nevanlinna
function can be characterized: F is a generalized Nevanlinna function with index
κ, F ∈ Nκ(H), if the negative index of the realizing (Pontryagin) space for any
minimal realization is κ. In fact, all minimal realizations are connected by means
of (standard) unitary operators.

Proposition 2.1. ([7, Thm. 3.2]) Let {Ai,Γi} realize F ∈ Nκ(H) minimally for i =
1, 2. Then there exists a standard unitary operator from {Π1, [·, ·]1} to {Π2, [·, ·]2}
such that A2 = UA1U

−1 and Γ2 = UΓ1.

For a generalized Nevanlinna function F the notation ρ(F ) and σ(F ) is used
to denote the domain of holomorphy of F in C ∪ {∞} and its complement (in
C ∪ {∞}), respectively. In particular, (2.2) implies that

ρ(A) ⊆ ρ(F ) and σ(F ) ⊆ σ(A). (2.5)

For minimal realizations the reverse inclusions also hold.

Theorem 2.2. ([11, Satz 4.4]) Let F ∈ Nκ(H) be minimally realized by {A,Γ}.
Then ρ(A) = ρ(F ).

Finally, α ∈ C∪{∞} is a generalized pole of a generalized Nevanlinna function
F if α ∈ σp(A) for any minimal realization {A,Γ} of F . Furthermore, the set of
generalized poles of not of positive type of F , GPNT (F ), is defined to be ENT (A)
(see Section 2.1). Note that Proposition 2.1 guarantees that these concepts are
well-defined.

2.3. Reduction of non-minimal realizations

Realizations for a generalized Nevanlinna function need not be minimal. For in-
stance, if the negative index of the realizing Pontryagin space is greater than the
negative index of a generalized Nevanlinna function, then the realization is not
minimal. Even if the negative index of the realizing space is equal to the neg-
ative index of a generalized Nevanlinna function, the realization might still be
non-minimal; cf. Section 2.4 below. The following operator-valued analog of [16,
Prop. 2.2] shows how non-minimal realizations can be reduced to minimal ones;
see also [11] and [7, Section 2].

Proposition 2.3. Let {A,Γ} realize F ∈ Nκ(H) and let κm denote the negative
index of the realizing Pontryagin space {Π, [·, ·]}. Moreover, with

M := span {
(
I + (z − z0)(A− z)−1

)
Γh : z ∈ ρ(A), h ∈ H},



Spectral decompositions and factorizations 7

define L, Πs and Πr as

L = (closM) ∩M[⊥], Πs = (closM)/L and Πr = M[⊥]/L.

Then the following statements hold:

(i) L is an A-invariant neutral subspace of {Π, [·, ·]} with κL := dimL ≤ κm;
(ii) As and Ar, defined via

grAs = {{f + [L], f ′ + [L]} : {f, f ′} ∈ grA ∩ (Πs ×Πs)};
grAr = {{f + [L], f ′ + [L]} : {f, f ′} ∈ grA ∩ (Πr ×Πr)},

are selfadjoint relations in the Pontryagin spaces {Πs, [·, ·]} and {Πr, [·, ·]}
with negative index κ and κm − κ− κL, respectively;

(iii) {As,Γ + [L]} realizes f minimally;
(iv) M[⊥] is the largest A-invariant subspace contained in ker Γ[∗].

Proof. (i) Let M be as in the statement, then (A−ξ)−1M ⊆M for every ξ ∈ ρ(A)
by the resolvent identity. From the preceding inclusion it follows by elementary

arguments that
(
(A− ξ)−1

)[∗]
M[⊥] ⊆M[⊥] or, equivalently, using the selfadjoint-

ness of A that (A− ξ)−1M[⊥] ⊆M[⊥]. Another application of the same argument
yields that (A− ξ)−1closM ⊆ closM. Since ρ(A) is symmetric with respect to the
real line for selfadjoint relations, see (2.1), M, closM and M[⊥] are A-invariant
and, hence, L is A-invariant, too.

(ii) Since L is neutral in a Pontryagin space, it is a finite-dimensional (closed)
subspace. Therefore {L[⊥]/L, [·, ·]} is a Pontryagin space with negative index κm−
κL, see [1, Ch. 1: Cor. 9.14]. A calculation, using the A-invariance and neutrality
of L, shows that AL, defined via

gr(AL) =
{
{f + [L], f ′ + [L]} ∈ L[⊥]/L× L[⊥]/L : {f, f ′} ∈ grA ∩ (L[⊥] × L[⊥])

}
is a symmetric linear relation in the introduced quotient space. To establish that
A is selfadjoint, it suffices by [4, Thm. 4.6] to show that

ρ(A) ⊆ ρ(AL). (2.6)

Let z ∈ ρ(A) be arbitrary. Since L is A-invariant (see (i)), L[⊥] is also A-invariant
and L[⊥] ⊆ ran (A− z), because z ∈ ρ(A) by assumption. Thus for every g ∈ L[⊥]

there exists {f, f ′} ∈ A, such that g = f ′ − zf . Now the A-invariance of L[⊥]

implies that f = (A− z)−1g ∈ L[⊥] and thus also f ′ ∈ L[⊥]. Therefore,

L[⊥] ⊆ { f ′ − zf : {f, f ′} ∈ grA ∩ (L[⊥] × L[⊥])}.

Consequently, ran (AL − z) = L[⊥]/L and this implies that z ∈ ρ(AL). Since
z ∈ ρ(A) was arbitrary, the above argument shows that (2.6) holds.

Now ΓL, defined via ΓLh := Γh + [L] for h ∈ H, is an everywhere defined
mapping from H to L[⊥]/L. Using ΓL and AL define the subspace ML of L[⊥]/L
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as

ML := span {
(
I + (z − z0)(AL − z)−1

)
ΓLh : z ∈ ρ(AL), h ∈ H}. (2.7)

By means of ML introduce in {L[⊥]/L, [·, ·]} the subspaces Πs := closML and

Πr := Π
[⊥]L
s ; here [⊥]L denotes the orthogonal complement in {L[⊥]/L, [·, ·]}. Then

clearly Πs = clos (M)/L and Πr = M[⊥]/L. Since L = clos (M) ∩M[⊥], Πs and
Πr are non-degenerate. Therefore {Πs, [·, ·]} and {Πr, [·, ·]} are Pontryagin spaces,
see [1, Ch. 1: Thm. 7.16 & Thm. 9.9]. The same arguments used in (i) yield

(AL − ξ)−1Πs ⊆ Πs and (AL − ξ)−1Πr ⊆ Πr, ξ ∈ ρ(AL) ⊇ ρ(A). (2.8)

Let As and Ar be as in (ii) with Πs and Πr as defined following (2.7), then As
and Ar, being restrictions of the selfadjoint relation AL, are symmetric. Moreover,
(2.8) together with the decomposition L[⊥]/L = Πs[+̇]Πr implies that ρ(As)∩C+,
ρ(As)∩C−, ρ(Ar)∩C+ and ρ(Ar)∩C− are all non-empty. Therefore As and Ar are
selfadjoint relations; again cf. [4]. The last assertion on the negative indices of the
Pontryagin spaces is a consequence of the result in (iii) combined with the fact that
the negative index of the Pontryagin space {L[⊥]/L, [·, ·]} is κm−dimL = κm−κL.

(iii) Let Γz be the γ-field associated with the realization {A,Γ} as in (2.3).
Then for every ωg, ωh ∈ L we have by definition of L that

[Γzh+ ωh,Γwg + ωg] = [Γzh,Γwg] = g∗
F (z)− F (w)∗

z − w
h, g, h ∈ H.

Hence, {As,ΓL} realizes F , see (2.4). Moreover, this realization is minimal by con-
struction, see the proof of (ii). Therefore the negative index of {Πs, [·, ·]} is κ by
Proposition 2.1 and the discussion preceding it.

(iv) In (i) it has been established that M[⊥] is A-invariant. The inclusion
M[⊥] ⊆ ker Γ[∗] follows directly from the fact that ran Γ ⊆M. Therefore to prove
the assertion it suffices to show that all A-invariant subspaces N contained in
ker Γ[∗] are orthogonal to M. Let N be any such subspace. Then for all h ∈ H and
z ∈ ρ(A)

[(I + (z − z0)(A− z)−1)Γh,N] = (h,Γ[∗](I + (z − z0)(A− z)−1)N) = 0.

This shows that N ⊆M[⊥]. �

Corollary 2.4. Let F ∈ Nκ(H) be realized by {A,Γ} and let κm denote the negative
index of the realizing Pontryagin space {Π, [·, ·]}. Then

κm − κ = max
N
{dimN : N is A-invariant, N ⊆ ker Γ[∗]};

here the maximum is over all nonpositive subspaces N of {Π, [·, ·]}.

Proof. Using the notation as in Proposition 2.3, Proposition 2.3 (ii) shows that
κm−κ = dimL+κr; here κr is defined to be the negative index of the Pontryagin
space {Πr, [·, ·]}. Since the negative index of the subspace M[⊥] of {Π, [·, ·]} is equal
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to dimL+κr and {N : N is A-invariant, N ⊆ ker Γ[∗]} ⊆M[⊥] by Proposition 2.3
(iv), the statement is proven if the existence of a nonpositive A-invariant subspace
of dimension dimL + κr contained in ker Γ[∗] is established.

Since Ar, the restriction of A to {Πr, [·, ·]} (see Proposition 2.3 (ii)), is a
selfadjoint relation in the Pontryagin space {Πr, [·, ·]}, the invariant subspace
theorem states that there exists a κr-dimensional nonpositive subspace Lr of
{Πr, [·, ·]} which is Ar-invariant, see e.g. [9, Thm. 12.1’]. Therefore N := Lr+L is a
(dimL+κr)-dimensional nonpositive A-invariant subspace contained in M[⊥]. �

2.4. The sum of generalized Nevanlinna functions

A particular situation where non-minimal realizations may be encountered is when
the sum of generalized Nevanlinna functions is considered; cf. [6]. Let Fi ∈ Nκi(H)
be (minimally) realized by {Ai,Γi}, for i = 1, 2. Then the sum F1 + F2 is realized
by {A1⊕̂A2, col (Γ1,Γ2)}, where

gr(A1⊕̂A2) = {{{f1, f2}, {f ′1, f ′2}} : {fi, f ′i} ∈ gr(Ai)};

col (Γ1,Γ2)h =

(
Γ1h

Γ2h

)
.

(2.9)

Here the realizing space is {Πsum, [·, ·]sum} where Πsum = Π1 ×Π2 and

[{f1, f2}, {g1, g2}]sum = [f1, g1]1 + [f2, g2]2, {f1, f2}, {g1, g2} ∈ Π1 ×Π2. (2.10)

To see this note that

(col (Γ1,Γ2))[∗](I + (z − z0)(A1⊕̂A2 − z)−1)col (Γ1,Γ2)

=

(
Γ1

Γ2

)[∗](
I + (z − z0)(A1 − z)−1 0

0 I + (z − z0)(A2 − z)−1

)(
Γ1

Γ2

)
=Γ

[∗]
1 (I + (z − z0)(A1 − z)−1)Γ1 + Γ

[∗]
2 (I + (z − z0)(A2 − z)−1)Γ2

=
F1(z)− F1(z0)

z − z0
+
F2(z)− F2(z0)

z − z0
=
F1(z) + F2(z)− (F1(z0) + F2(z0))

z − z0
,

where in the third step (2.2) was used. In view of (2.2) this calculation shows that
{A1⊕̂A2, col (Γ1,Γ2)} realizes F1 + F2; cf. [6, Prop. 4.1]. In particular, F1 + F2 ∈
Nκsum(H) where κsum ≤ κ1 + κ2; cf. Proposition 2.3.

Notice, conversely, that if {A,Γ} realizes the function F ∈ Nκ(H) and there

exists a decomposing (regular) subspace Π1 of Π, i.e. Π = Π1[+̇]Π2 with Π2 = Π
[⊥]
1 ,

which also reduces A, A = A1⊕̂A2, then {A1, P1Γ} and {A2, P2Γ}, where Pj with
j = 1, 2 is the Π-orthogonal projection onto Πj , produce realizations for general-
ized Nevanlinna functions F1 and F2 such that F = F1 + F2.

Proposition 2.5 below contains sufficient conditions for the index of F1 + F2

to be the sum of the indices of F1 and F2; see [2, Prop. 3.2] for a similar statement
for matrix-valued generalized Nevanlinna functions.



10 S. Hassi & H. L. Wietsma

Proposition 2.5. Let F1 ∈ Nκ1(H), F2 ∈ Nκ2(H) and assume that F1 and F2 do
not have a generalized pole in common. Then F1 + F2 ∈ Nκ1+κ2

(H).

Proof. Let {Ai,Γi} be a minimal realization for Fi where the realizing space is
{Πi, [·, ·]i}, for i = 1, 2. Then, as the discussion preceding this statement demon-
strated, F1 +F2 is realized by {A,Γ} := {A1⊕̂A2, col (Γ1,Γ2)} where the realizing
space is the Pontryagin space {Π, [·, ·]} := {Πsum, [·, ·]sum} whose negative index is
κ1 +κ2, see (2.10). Hence F1 +F2 is a generalized Nevanlinna function. In order to
establish that its index is κ1 + κ2, the non-minimal part of its realization {A,Γ}
should be investigated; cf. Proposition 3.1. But first note that if P1 and P2 are the
orthogonal projections onto Π1 and Π2 in Πsum, then

(A1⊕̂A2 − z)−1Pi = (Ai − z)−1Pi = Pi(A1⊕̂A2 − z)−1, i = 1, 2, (2.11)

see (2.9). Denote by M[⊥] the non-minimal part of the realization {A,Γ} as in
Proposition 2.3. If L := clos (M) ∩M[⊥] 6= {0}, then L, being finite-dimensional
and A-invariant (see Proposition 2.3 (i)), contains an eigenvector x for A = A1⊕̂A2

such that x ∈ ker Γ[∗]. But, then (2.11) implies that P1x and P2x are eigenvectors
for A1 and A2, respectively. Since σp(A1)∩σp(A2) = ∅ by assumption, this implies
that either of the two vectors is zero; say P2x = 0. Thus P1x is an eigenvector
for A1, P2x = 0 and x ∈ ker Γ[∗]. The last two conditions together yield that

P1x ∈ ker Γ
[∗]
1 ; cf. (2.9). But then the realization {A1,Γ1} for F1 is not minimal

by Proposition 2.3; in contradiction to the assumption. I.e., L = {0}.

Therefore M[⊥] is A-invariant and {M[⊥], [·, ·]} is a Pontryagin space, see
Proposition 2.3 (ii). The exact same argument as used in the preceding paragraph
shows that σp(A �M[⊥]) = ∅. Hence Pontryagin’s invariant subspace theorem (ap-

plied to the selfadjoint relation A �M[⊥] in {M[⊥], [·, ·]}) implies that {M[⊥], [·, ·]}
is a Hilbert space, see e.g. [9, Thm. 12.1’]. Consequently, the statement holds by
Proposition 2.3 (ii); cf. Corollary 2.4. �

Extending upon Proposition 2.5, the following result shows when a minimal
realization for F1 + F2 can be obtained when starting from minimal realizations
for F1 and F2.

Proposition 2.6. Let {Ai,Γi} minimally realize the generalized Nevanlinna function
Fi ∈ Nκi(H), for i = 1, 2, and assume that

σp(A1) ∩ σp(A2) = ∅ and σ(A1) ∩ σ(A2) = {γ1, . . . , γn} ⊆ R ∪ {∞}.

Then F1 + F2 ∈ Nκ1+κ2
(H) is minimally realized by {A1⊕̂A2, col (Γ1,Γ2)}.

Proof. As the above discussion demonstrated, F1 + F2 is realized by {A,Γ} :=
{A1⊕̂A2, col (Γ1,Γ2)} where the realizing space is the Pontryagin space {Π, [·, ·]} :=
{Πsum, [·, ·]sum} whose negative index is κ1 +κ2, see (2.10). To prove the minimal-
ity of the realization for F1 + F2 let M be as in Proposition 2.3.
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Since the index of F1 + F2 is equal to the negative index of {Π, [·, ·]} by
Proposition 2.5, Proposition 2.3 yields that {M[⊥], [·, ·]} is a Hilbert space and
that Ar, defined via gr(Ar) = gr(A) ∩ (M[⊥] ×M[⊥]), is a selfadjoint relation in
{M[⊥], [·, ·]}. In particular, σ(Ar) ⊆ R ∪ {∞}. We claim that

σ(Ar) ⊆ σ(A1) and σ(Ar) ⊆ σ(A2). (2.12)

If the first inclusion does not hold, then, since σ(A1) ∩ (R ∪ {∞}) and σ(Ar) are
closed subsets of R ∪ {∞}, there exists a closed interval ∆ = [a, b] of R such that

∆ ∩ σ(Ar) 6= ∅ and ∆ ⊆ ρ(A1). (2.13)

Let Et be the spectral family of Ar and let Pi be the orthogonal projections
onto Πi in Π, for i = 1, 2. Then the assumption ∆ ∩ σ(Ar) 6= ∅ implies that

L := (Eb − Ea)M[⊥] 6= {0}.
Consider L1 := P1L ⊆ Π1. Then, on the one hand,

σ(A �L1) ⊆ σ(A �L) ⊆ ∆ ⊆ ρ(A1).

On the other hand, the A1-invariance of L1 implies that σ(A �L1
) ⊆ σ(A1). The

preceding two results together imply that L1 = {0}; cf. (2.13). In other words,

L ⊆ {0} × Π2. But then L ⊆ ker Γ
[∗]
2 , because L ⊆M[⊥] ⊆ ker Γ[∗]. Consequently,

the realization {A2,Γ2} is not minimal. This contradiction shows that the first
inclusion in (2.12) holds. By symmetry the second inclusion also holds.

Combining the inclusions from (2.12) together with the assumption about
σ(A1) ∩ σ(A1) yields that σ(Ar) consists at most of isolated points. I.e., all the
spectrum of Ar is point spectrum. Let x be an eigenvector for Ar. Then P1x and
P2x are eigenvectors for A1 and A2, respectively. Since σp(A1)∩σp(A2) = ∅, either

P1x or P2x should be equal to zero. Assume the latter. Since x ∈M[⊥] ⊆ ker Γ[∗]

(see Proposition 2.3), it follows that x = P1x ⊆ ker Γ
[∗]
1 ; but this is in contradiction

to the assumed minimality of the realization {A1,Γ1} of F1. �

3. Decompositions of generalized Nevanlinna functions

For α, β ∈ C ∪ {∞}, with α 6= β, and for non-orthogonal vectors η and ξ in a
Hilbert space H define the operator-valued rational function R as:

R(z;α, β, η, ξ) = I − P +
z − α
z − β

P, P =
ξη∗

η∗ξ
, η∗ξ 6= 0; (3.1)

here R(z;∞, β, η, ξ) and R(z;α,∞, η, ξ) should be interpreted to be I − P + (z −
β)−1P and I − P + (z − α)P , respectively. Note that

(R(z;α, β, η, ξ))# = R(z;α, β, ξ, η) and (R(z;α, β, η, ξ))−1 = (R(z;β, α, η, ξ));

here for any operator-valued function Q(z), Q#(z) is defined to be Q(z)∗.
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With this notation, (realizations for) products of the form R#FR, where
R(z) = R(z;α, β, η, ξ), are investigated in the first subsection. In the second sub-
section these considerations are combined with a factorization from [14] to decom-
pose generalized Nevanlinna functions with respect to their analytic behavior as
stated in Theorem 1.1. These results are in turn used to prove Theorem 1.2 in the
third and final subsection.

3.1. Multiplication with an order one term

Here an explicit realization for R#FR, where R is as in (3.1), is generated from
any given realization for F ∈ Nκ(H). This realization expresses can be seen as a
modification and extension of [16, Thm. 1.3] from scalar-valued to operator-valued
functions. Note that the explicit resolvent formula in Proposition 3.1 reflects how
the invariant subspaces of the realizing relation for R#FR are connected to the
invariant subspaces of the realizing relation for the original function F .

Proposition 3.1. Let F ∈ Nκ(H) be realized by {A,Γ} at z0 ∈ ρ(A) \ {β, β}, where
α, β ∈ C∪{∞} satisfy α 6= β, and let ξ, η ∈ H satisfy η∗ξ 6= 0. Then FR := R#FR,
where R(z) = R(z;α, β, η, ξ) as in (3.1), is realized by {AR,ΓR} which are defined
for z ∈ ρ(A) \ {β, β} via

(AR− z)−1 =


1

β−z
ξ∗Γ

[∗]
z

β−z
ξ∗F (z)ξ

(β−z)(β−z)
0 (A− z)−1 Γzξ

β−z
0 0 1

β−z

 , ΓR =


ξ∗F (z0)

β−z0
R(z0)

ΓR(z0)
α−β
β−z0

η∗

η∗ξ

 . (3.2)

Here the realizing space {Π2, [·, ·]2} of {AR,ΓR} is defined as

[g, h]2 := [gc, hc]+grhl+glhr, g = {gl, gc, gr}, h = {hl, hc, hr} ∈ Π2 := C×Π×C,
where {Π, [·, ·]} is the realizing space of {A,Γ}.

Recall that Γz in Proposition 3.1 is the γ-field associated with the realization
{A,Γ} for F , see (2.3). Furthermore, if α =∞, then ΓR should be interpreted to
be

ΓR =
(
ξ∗F (z0)

β−z0
R(z0) ΓR(z0) − 1

β−z0
η∗

η∗ξ

)T
,

and if β =∞, then {AR,ΓR} should be interpreted to be

(AR − z)−1 =

0 ξ∗Γ
[∗]
z ξ∗F (z)ξ

0 (A− z)−1 Γzξ
0 0 0

 , ΓR =

ξ∗F (z0)R(z0)
ΓR(z0)

η∗

η∗ξ

 .

Proof. Here only the case α, β ∈ C is treated; the cases α = ∞ or β = ∞ follow
by analogous arguments.

First the selfadjointness of AR is established. Therefore let H(z) := (AR −
z)−1. Then the formula in (3.2) shows that H(z) is an everywhere defined operator
for z ∈ ρ(A)\{β, β}. In particular, since ρ(A) 6= ∅, ρ(A) contains all of C \ R except
finitely many points, for all those points H(z) is an everywhere defined bounded
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operator. Moreover, a direct calculation shows that H(z)[∗] = H(z). Next we
establish that H satisfies the resolvent identity. Therefore note that a calculation
shows that H(z)H(w) is equal to

1
(β−z)(β−w)

ξ∗

β−z

(
Γ

[∗]
w

β−w + Γ
[∗]
z (A− w)−1

)
ξ∗

F (w)

β−w
+Γ

[∗]
z Γw+

F (z)
β−z

(β−z)(β−w)
ξ

0 (A− z)−1(A− w)−1
(

(A− z)−1Γw + Γz
β−z

)
ξ

β−w
0 0 1

(β−z)(β−w)

 .

Using (2.3) and the resolvent identity for A we have that

Γ
[∗]
z (A− w)−1 = Γ[∗] (I + (z − z0)(A− z)−1

)
(A− w)−1

= Γ[∗]
(

(A− w)−1 +
z − z0

z − w
(
(A− z)−1 − (A− w)−1

))
=

Γ[∗]

z − w
(
(z − z0)(A− z)−1 − (w − z0)(A− w)−1

)
=

Γ
[∗]
z − Γ

[∗]
w

z − w
.

Moreover, using (2.4) we have that

F (w)

β − w
+ Γ

[∗]
z Γw +

F (z)

β − z
= F (z)

(
1

β − z
+

1

z − w

)
+ F (w)

(
1

β − w
− 1

z − w

)
=

1

z − w

(
β − w
β − z

F (z)− β − z
β − w

F (w)

)
.

Combining the three preceding expressions and using the resolvent identity for A

yields that H(z)H(w) = H(z)−H(w)
z−w . Consequently, AR is a selfadjoint relation in

{Π2, [·, ·]2}, see [4, Prop. 3.4 and Cor. on p. 162].

As the second step towards proving that {AR,ΓR} realizes FR, the γ-field
associated with {AR,ΓR} is determined. Using

z0 − α
z0 − β

+
z − z0

β − z
α− β
β − z0

=
α− β
β − z

+ 1 =
z − α
z − β

(3.3)

and the identity (z − z0)Γ
[∗]
z Γ = F (z)− F (z0), see (2.4), a straight-forward calcu-

lation shows that

(ΓR)z := (I + (z − z0)(AR − z)−1)ΓR =
(
ξ∗F (z)

β−z R(z) ΓzR(z) α−β
β−z

η∗

η∗ξ

)>
.

Combining this last result with (3.3) and the identity (z−z0)Γ[∗]Γz = F (z)−F (z0)
from (2.4) leads to

(z − z0)Γ
[∗]
R (ΓR)z =

z − z0

β − z
α− β
β − z0

ηξ∗

ξ∗η
F (z)R(z) +R(z0)∗F (z0)

z − z0

β − z0

α− β
β − z

ξη∗

η∗ξ

+

[
(I − P ∗) +

z0 − α
z0 − β

P ∗
]

(F (z)− F (z0))[(I − P ) +
z − α
z − β

P ]

= R#(z)F (z)R(z)−R#(z0)F (z0)R(z0) = FR(z)− FR(z0).
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This shows that {AR,ΓR} realizes FR, see (2.4). �

3.2. Decomposing generalized Nevanlinna functions

Recall that ρ(F ) and σ(F ) denote the set of holomorphy of a generalized Nevan-
linna function F in C∪{∞} and its complement, respectively. When F is minimally
realized by {A,Γ}, then ρ(F ) and σ(F ) coincide with ρ(A) and σ(A), respectively,
see Theorem 2.2.

Proof of Theorem 1.1. Let z0 ∈ ρ(F ) ∩ (C \ R)( 6= ∅), then there exists an every-
where defined selfadjoint operator C in H such that ran (F (z0) + C) = H, i.e.,
that F + C is boundedly invertible at z0. Since the statement clearly holds for F
if it holds for F + C, we may w.l.o.g. assume that F is boundedly invertible at
a point z0 ∈ ρ(F ) ∩ (C \ R), cf. [14, Prop. 2.1]; such operator-valued generalized
Nevanlinna functions are called regular.

Let {α1, . . . , ακ} and {β1, . . . , βκ} be the sets of all GPNTs of F and −F−1

in C+ ∪ R ∪ {∞}, respectively; here each GPNT occurs in accordance with its
multiplicity. Since F is assumed to be regular, [14, Thm. 5.2 and Cor. 5.3] yield

the existence of η1, ξ1, η̃1, ξ̃1 ∈ H satisfying η∗1ξ1 6= 0 and η̃∗1 ξ̃1 6= 0 such that

F1 := R#
1 FR ∈ Nκ−1(H), where

R1(z) = R(z;β1, γ, η̃1, ξ̃1)R(z; γ, α1, η1, ξ1);

here γ is an arbitrary element of C \ (R∪GPNT (F )∪GPNT (−F−1)). Moreover,
the cited statements yield that {α2, . . . , ακ} and {β2, . . . , βκ} are the sets of all
GPNTs of F1 and −F−1

1 in C+ ∪ R ∪ {∞}, respectively. Since F1 is evidently
regular, inductively applying this argument yields that F can be factorized as
R#F0R, where F0 ∈ N0(H) and

R(z) =

κ∏
j=1

R(z;βi, γ, η̃i, ξ̃i)R(z; γ, αi, ηi, ξi); (3.4)

here γ is any element of C \ (R∪GPNT (F )∪GPNT (−F−1)) and ηi, ξi, η̃i, ξ̃i ∈ H
satisfy η∗i ξi 6= 0 6= η̃∗i ξ̃i for i = 1, . . . , κ. For later usage introduce the set P0 as

P0 := {γ, γ} ∪GPNT (F ) = {γ, γ} ∪ {α1, . . . , ακ, α1, . . . , ακ}. (3.5)

Let {A0,Γ0} realize F0 minimally, then the corresponding realizing space is a
Hilbert space {H, (·, ·)}, see e.g. [15]. Using the spectral family of A0, H can be
decomposed as H1⊕H2 such that, with Ai defined via gr(Ai) = gr(A)∩ (Hi×Hi),

(a) {Hi, (·, ·)} is a Hilbert space and Hi is A-invariant for i = 1, 2;
(b) σ(A1) ⊆ clos ∆ and int ∆ ⊆ ρ(A2);
(c) σp(A1) ∩ σp(A2) = ∅.

For instance, if ∆ = (a, b) ⊆ R, then the desired decomposition with the properties
(a)–(c) can be obtained by taking H1 to be Eb−Ea, where {Ex}x∈R is the spectral
family associated with the Hilbert space selfadjoint relation A0.
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Since {A0,Γ0} is a minimal realization for F0, the decomposition with the
properties (a)–(c) induces an additive representation F0 = F1 +F2, where Fj is an
ordinary Nevanlinna function realized by {Aj , PjΓ0}; here Pj is the Π-orthogonal
projection onto Hj for j = 1, 2, see the discussion following (2.10). Notice that
the realizations {A1, P1Γ0} and {A2, P2Γ0} are automatically minimal, because
the realization {A0,Γ0} is assumed to be minimal. Inserting this additive repre-
sentation F0 = F1 + F2 into the factorization F = R#F0R produces the following
decomposition for F :

F (z) = R#(z)F0(z)R(z) = R#(z)F1R(z) +R#(z)F2(z)R(z). (3.6)

Next the terms R#F1R and R#F2R are considered separately. In order to treat
them, divide P0, see (3.5), into the following three sets:

P∆ = P0 ∩ int ∆, Pc = P0 ∩ ∂∆ and Pr = P0 \ (P∆ ∪ Pc). (3.7)

R#F1R: By Proposition 3.1 there exist an extension A1,R of A1 in a Pontrya-
gin space {Π1,R, [·, ·]1,R} (with at most 2κ negative squares since, in addition to the
poles αi, R in (3.4) can have at most κ additional poles located at γ) and a map-
ping Γ1,R such that {A1,R,Γ1,R} realizes R#F1R. Furthermore, Proposition 3.1
shows that

σ(A1,R) ⊆ σ(A1) ∪ P0 = σ(A1) ∪ P∆ ∪ Pc ∪ Pr.

By definition, see (b) and (3.7), Pr consists of (finitely many) isolated points of
the spectrum σ(A1,R). Therefore {Π1,R, [·, ·]} can by means of Riesz projections
(contour integrals of the resolvent, see e.g. [1, Ch. 2: Thm. 2.20]) be decomposed
as Π1

1,R[+]Π2
1,R, such that, with A1,R,i defined by gr(A1,R,i) = gr(A1,R)∩ (Πi

1,R ×
Πi

1,R), the following statements hold:

(a1) {Πi
1,R, [·, ·]1,R} is a Pontryagin space and Πi

1,R is A1,R-invariant for i = 1, 2;

(b1) σ(A1,R,1) ⊆ σ(A1) ∪ P∆ ∪ Pc ⊆ clos ∆;
(c1) σ(A1,R,2) ⊆ Pr and, hence, int ∆ ⊆ ρ(A1,R,2).

R#F2R: By Proposition 3.1 there exist an extension A2,R of A2 in a Pontrya-
gin space {Π2,R, [·, ·]2,R} (again with at most 2κ negative squares) and a mapping
Γ2,R such that {A2,R,Γ2,R} realizes R#F2R. Again Proposition 3.1 shows that

σ(A2,R) ⊆ σ(A2) ∪ P0 = σ(A2) ∪ P∆ ∪ Pc ∪ Pr.

Hence, by construction (see (b)) there exist an open neighborhood O (in C) con-
taining P∆ such that O \ P∆ ⊆ ρ(A2,R). Thus {Π2,R, [·, ·]} can by means of Riesz
projections (see [1, Ch. 2: Thm. 2.20]) be decomposed as Π1

2,R[+]Π2
2,R, where, with

A2,R,i defined via gr(A2,R,i) = gr(A2,R) ∩ (Πi
2,R ×Πi

2,R), the following statements
hold:

(a2) {Πi
2,R, [·, ·]2,R} is a Pontryagin space and Πi

2,R is A2,R-invariant for i = 1, 2;

(b2) σ(A2,R,1) ⊆ P∆ ⊆ ∆;
(c2) σ(A2,R,2) ⊆ σ(A2) ∪ Pc ∪ Pr and, hence, int ∆ ⊆ ρ(A2,R,2).
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Now we reconsider F and decompose it as claimed in Theorem 1.1. Therefore
let Fi,j be the function realized by {Ai,R,j ,Γi,R,j} for i, j = 1, 2. By means of these
functions define F∆ and FR as

F∆ := F1,1 + F2,1 and FR := F1,2 + F2,2.

We claim that these functions satisfy all the criteria in Theorem 1.1. Indeed,
by construction the functions F∆ and FR are (possibly non-minimally) realized
by {A∆,Γ∆} := {A1,R,1 ⊕ A2,R,1, col (Γ1,R,1,Γ2,R,1)} and {AR,ΓR} := {A1,R,2 ⊕
A2,R,2, col (Γ1,R,2,Γ2,R,2)}, see Section 2.4. Therefore (b)-(c), (b1)-(c1) and (b2)-
(c2) show that

σ(A∆) ⊆ clos ∆, int (∆) ⊆ ρ(AR) and σp(A∆) ∩ σp(Ar) ⊆ Pc.
Since Pc is by definition equal to ({γ, γ} ∪ GPNT (F )) ∩ ∂∆, cf. (3.5) and (3.7),
(2.5) and Proposition 2.3 show that all the assertions in Theorem 1.1 hold except
the assertions about the sum of the indices κ∆ and κR of F∆ and FR. The fact
that κ∆ +κR ≥ κ is indicated in the discussion preceding (2.9). The final assertion
in Theorem 1.1 that κ∆ + κR = κ if GPNT (F ) ∩ (clos (∆) \ ∆) = ∅ is now a
consequence of Proposition 2.5. �

Inductively applying the preceding statement to the case when ∆ is an inter-
val of R ∪ {∞} containing precisely one GPNT in its interior yields Corollary 3.2
below. Note in connection with Corollary 3.2 that since non-real poles of a gener-
alized Nevanlinna function are isolated, we can always write a generalized Nevan-
linna function as the sum of a generalized Nevanlinna function holomorphic in
C \ R with rational functions each having a pole only at a non-real point and its
conjugate.

Corollary 3.2. Let F ∈ Nκ(H) and let GPNT (F ) = {α1, . . . , αn, α1, . . . , αn} where
α1, . . . , αn are distinct elements of C ∪ {∞}. Then F =

∑n
i=1 Fi, where

(i) Fi ∈ Nκi(H), for i = 1, . . . , n, and
∑n
i=1 κi = κ;

(ii) GPNT (Fi) = {αi, αi}, for i = 1, . . . , n;
(iii) σ(Fi) ∩ σ(Fj) contains at most two points and any point contained in the

intersection is not both a generalized pole for Fi and Fj, for 1 ≤ i 6= j ≤ n.

3.3. Decomposing selfadjoint relations in Pontryagin spaces

In order to prove Theorem 1.2 the result from the preceding section is lifted to
the setting of selfadjoint relations by associating to (the resolvent) of selfadjoint
relations an (operator-valued) generalized Nevanlinna function.

Proof of Theorem 1.2. Let J be any canonical symmetry for the Pontryagin space
{Π, [·, ·]} appearing in Theorem 1.2. Then {H, (·, ·)} := {Π, [J ·, ·]} defines a Hilbert
space, see e.g. [1, Ch. 1, § 3]. In addition to the given selfadjoint relation A in the
Pontryagin space Π introduce the operator Γ : H (= Π) → Π as the identity
mapping. Then the pair {A,Γ} provides a minimal realization for the following
generalized Nevanlinna function:

F (z) = z0J + (z − z0)J
(
I + (z − z0)(A− z)−1

)
, z0, z ∈ ρ(A); (3.8)
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cf. (2.2). Let F∆ +FR be the additive decomposition of F provided by Theorem 1.1
with respect to ∆ as in Theorem 1.2. In particular,

σ(F∆) ⊆ clos ∆ and int ∆ ⊆ ρ(FR). (3.9)

If {A∆,Γ∆} and {AR,ΓR} are arbitrary minimal realizations for F∆ and FR, re-
spectively, then {A∆⊕̂AR, col (Γ∆,ΓR)} is a realization for F . Moreover, by Theo-
rem 2.2 σ(A∆) = σ(F∆) and ρ(AR) = ρ(FR). In view of (3.9), the first statement
in Theorem 1.2 now holds by Proposition 2.3 and 2.1.

Finally, if ∂∆∩ENT (A) = ∅, then by definition ∂∆∩GPNT (F ) = ∅. Thus the
additive decomposition F∆ +FR of F with respect to ∆ provided by Theorem 1.1
has the following properties:

(a) σ(F∆) ⊆ clos ∆ and int ∆ ⊆ ρ(FR);
(b) no point of clos (∆) \∆ is both a generalized pole of F∆ and FR.

Let {A∆,Γ∆} and {AR,ΓR} be arbitrary minimal realizations for the function F∆

and FR, respectively. By Theorem 2.2 and the definition of generalized poles (see
Section 2.2) the preceding two properties imply that

(a’) σ(A∆) ⊆ clos ∆ and int ∆ ⊆ ρ(AR);
(b’) σp(A∆) ∩ σp(AR) = ∅.
Thus Proposition 2.6 implies that {A∆⊕̂AR, col (Γ∆,ΓR)}, see (2.9), is a minimal
realization for F in (3.8). Therefore the statement has been proven, because all
minimal realizations for the same generalized Nevanlinna function are unitarily
equivalent by Proposition 2.1. �

The assumption ρ(A) 6= ∅ in Theorem 1.2 is needed, because there exist
selfadjoint relations A (even in finite-dimensional) Pontryagin spaces for which
σp(A) = C ∪ {∞}; see [4, p. 155-156].

Applying Theorem 1.2 inductively leads to the following decomposition re-
sults for selfadjoint relations. Note that from Corollary 3.3 the canonical form of
selfadjoint operators in finite-dimensional Pontryagin spaces, see [5, Thm. 5.1.1.],
can be derived.

Corollary 3.3. Let A be a selfadjoint relation in a Pontryagin space {Π, [·, ·]}
with σ(A) ∩ (C+ ∪ R ∪ {∞}) = {α1, . . . , αn}. Then there exists a decomposition
Π1[+] . . . [+]Πn of Π such that

(i) {Πi, [·, ·]} is a Pontryagin space for i = 1, . . . , n;
(ii) Πi is A-invariant for i = 1, . . . , n;
(iii) σ(A �Πi) = {αi, αi} for i = 1, . . . , n.

Corollary 3.4. Let A be a selfadjoint relation in a Pontryagin space {Π, [·, ·]} with
ρ(A) 6= ∅ and let ENT (A) = {α1, . . . , αn, α1, . . . , αn}. Then there exists a decom-
position Π1[+] . . . [+]Πn of Π such that

(i) {Πi, [·, ·]} is a Pontryagin space for i = 1, . . . , n;
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(ii) Πi is A-invariant for i = 1, . . . , n;
(iii) {α1, . . . , αi−1, αi+1, . . . αn} ∈ ρ(A �Πi) for i = 1, . . . , n;
(iv) σp(A �Πi) ∩ σp(A �Πj ) = ∅ and σ(A �Πi) ∩ σ(A �Πj ) contains at most finitely

many points, for 1 ≤ i 6= j ≤ n.

Observe that condition (iii) in Corollary 3.4 implies that αi and αi are the
only ENTs of A restricted to Πi for i = 1, . . . , n.
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[12] M.G. Krĕın and H. Langer, “Über einige Fortsetzungsprobleme, die eng mit der
Theorie hermitescher Operatoren im Raum Πκ zusammenhängen, I. Einige Funktio-
nenklassen und ihre Darstellungen”, Math. Nachr. 77 (1977), 187–236.

[13] H. Langer, Spectral functions of definitizable operators in Krĕın spaces, Functional
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