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Abstract
Passive discrete-time systems in Pontryagin space setting are investigated. In this case
the transfer functions of passive systems, or characteristic functions of contractive
operator colligations, are generalized Schur functions. The existence of optimal and
∗-optimal minimal realizations for generalized Schur functions are proved. By using
those realizations, a new definition, which covers the case of generalized Schur func-
tions, is given for defects functions. A criterion due to D.Z. Arov andM.A. Nudelman,
when all minimal passive realizations of the same Schur function are unitarily similar,
is generalized to the class of generalized Schur functions. The approach used here is
new; it relies completely on the theory of passive systems.

Keywords Operator colligation · Passive system · Transfer function · Defect
functions · Generalized Schur class · Contractive operator

Mathematics Subject Classification Primary 47A48; Secondary 47A56 · 47B50 ·
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1 Introduction

An operator colligation � = (T�;X ,U ,Y; κ) consists of separable Pontryagin
spaces X (the state space), U (the incoming space), and Y (the outgoing space) and
the system operator T� ∈ L(X ⊕ U ,X ⊕ Y), the space of bounded operators from
X ⊕U toX ⊕Y,whereX ⊕U , or

(X
U

)
, means the direct orthogonal sum with respect
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to the indefinite inner product. The symbol κ is reserved for the finite negative index
of the state space. The operator T� has the block representation of the form

T� =
(
A B
C D

)
:
(X
U

)
→

(X
Y

)
, (1.1)

where A ∈ L(X ) (the main operator), B ∈ L(U ,X ) (the control operator), C ∈
L(X ,Y) (the observation operator), and D ∈ L(U ,Y) (the feedthrough operator).
If needed, the colligation is written as � = (A, B,C, D;X ,U ,Y; κ). It is always
assumed in this paper that U and Y have the same negative index.

All notions of continuity and convergence are understood to be with respect to the
strong topology, which is induced by any fundamental decomposition of the space in
question.

The colligation (1.1) will be called as a system since it can be seen as a linear
discrete time system of the form

{
hk+1 = Ahk + Bξk,

σk = Chk + Dξk,
k ≥ 0,

where {hk} ⊂ X , {ξk} ⊂ U and {σk} ⊂ Y . In what follows, the “system” is identified
with the operator expression appearing in (1.1). When the system operator T� in
(1.1) is contractive (isometric, co-isometric, unitary), with respect to the indefinite
inner product, the corresponding system is called passive (isometric, co-isometric,
conservative). In literature, conservative systems are also called unitary systems. The
transfer function of the system (1.1) is defined by

θ�(z) := D + zC(I − zA)−1B,

whenever I − zA is invertible. Especially, θ� is defined and holomorphic in a neigh-
bourhood of the origin. The values θ�(z) are bounded operators from U to Y .

Conversely, if θ is an operator valued function holomorphic in a neighbourhood of the
origin, and transfer function of the system � coinsides with it, then � is a realization
of θ. In some sources, transfer functions of the systems are also called characteristic
functions of operator colligations.

The adjoint or dual of the system � is the system �∗ such that its system operator
is the indefinite adjoint T ∗

� of T�. That is, �∗ = (T ∗
�;X ,Y,U; κ). In this paper, all

the adjoints are with respect to the indefinite inner product. For an operator valued
function ϕ, the notation ϕ∗(z) is used instead of (ϕ(z))∗ , and the function ϕ#(z) is
defined to be ϕ∗(z̄). With this notation, for the transfer function θ�∗ of �∗, it clearly
holds θ�∗(z) = θ�

#(z). Since contractions between Pontryagin spaces with the same
negative index are bi-contractions (cf. eg. [24, Corollary 2.5]),�∗ is passive whenever
� is.

In the case where all the spaces are Hilbert spaces, the result that the transfer
function of a passive system belongs to the Schur class has been established by Arov
[4, Proposition 8]. In the case where U and Y are Hilbert spaces and the state space X



Minimal Passive Realizations of Generalized Schur… Page 3 of 34 35

is a Pontryagin space, Saprikin showed in [30, Theorem 2.2] that the transfer function
of the passive system (1.1) is a generalized Schur function. It will be proved later in
Proposition 2.4 that this result holds also in the case when all the spaces are Pontryagin
spaces. The generalized Schur class Sκ(U ,Y), where U andY are Pontryagin spaces
with the same negative index, is the set ofL(U ,Y)-valued functions S(z) holomorphic
in a neighbourhood � of the origin such that the Schur kernel

KS(w, z) = 1 − S(z)S∗(w)

1 − zw̄
, w, z ∈ �, (1.2)

has κ negative squares (κ = 0, 1, 2, . . .). This means that for any finite set of points
w1, . . . , wn in the domain of holomorphy ρ(S) of S and set of vectors { f1, . . . , fn} ⊂
Y, the Hermitian matrix

(〈
KS(w j , wi ) f j , fi

〉
Y

)n
i, j=1

,

where 〈·, ·〉Y is the indefinite inner product of the space Y, has no more than κ

negative eigenvalues, and there exists at least one such matrix that has exactly κ

negative eigenvalues. A function S belongs to Sκ(U ,Y) if and only if S#κ ∈ S(Y,U);
see [1, Theorem 2.5.2]. The class S0(U ,Y) coinsides with the ordinary Schur class,
and it is written as S(U ,Y). The generalized Schur class was first studied by Kreı̆n
and Langer; see [26] for instance.

The direct connection between the transfer functions of passive systems of the form
(1.1) and the generalized Schur functions allows to study the properties of generalized
Schur functions by using passive systems, and vice versa. Therefore, a fundamen-
tal problem of the subject is, for a given θ ∈ Sκ(U ,Y), find a realization � of θ

with the desired minimality or optimality properties (observable, controllable, sim-
ple, minimal, optimal, ∗-optimal); for details, see Theorems 2.6 and 3.5 and Lemma
2.8. The described problem is called a realization problem. In the standard Hilbert
space setting, realizations problems, as well as other properties of passive systems,
were studied, for instance, by Arov [4,5], Arov et al. [6–8], Ball and Cohen [13], de
Branges and Rovnyak [20,21], Helton [25] and Nagy and Foias [29]. The case where
the state space is a Pontryagin space while incoming and outgoing spaces are still
Hilbert spaces, unitary systems were studied, for instance, by Dijksma et al. [22,23],
and passive systems by Saprikin [30], Saprikin and Arov [10], Saprikin et al. [9] and
by the author in [27]. The case where all the spaces are Pontryagin spaces, theory
of isometric, co-isometric and conservative systems is considered, for instance, in
[1,2,24].

Especially, Arov [5] proved the existence of so-called optimal minimal realizations
of an ordinary Schur function; for definitions, see Sect. 3. The proof was based on the
existence (right) defect functions. For an ordinary Schur function S(ζ ), the (right)
defect function ϕ of S is, roughly speaking, the maximal analytic minorant of I −
S∗(ζ )S(ζ ). More precicely, this means that for almost everywhere (a.e.) ζ on the unit
circle T, it holds

ϕ∗(ζ )ϕ(ζ ) ≤ I − S∗(ζ )S(ζ ),
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and for every other operator valued analytic function ϕ̂ with similar property, it holds

ϕ̂∗(ζ )ϕ̂(ζ ) ≤ ϕ∗(ζ )ϕ(ζ ).

For the existence of defect functions, see [29, Theorem V.4.2], and for a detailed
treatise, see [17–19]. Another names of defect functions are “spectral factors”, see
[12]. Arov et al. [6] constructed (∗-)optimal minimal passive systems in the Hilbert
space settingwithout using defect functions. The construction can be done by taking an
appropriate restriction of some system. In the indefinite setting, if one uses a suitable
definition of optimality, a similar method as was used by Arov et al. still produces a
(∗-)optimal minimal passive system. In Pontryagin state space case, this was proved
by Saprikin [30]. It will be shown in Theorem 3.5 that the same result still holds in
the case where all the spaces are Pontryagin spaces.

The study of the class of generalized Schur functions Sκ(U ,Y) was continued in
[9,10], in the case where U andY are Hilbert spaces and the state space is a Pontryagin
space. Saprikin and Arov [10] used the right Kreı̆n–Langer factorization of the form
S = Sr B−1

r for S ∈ Sκ(U ,Y), and proved that the existence of the optimal minimal
realizationof S is equivalent to the existence of the right defect functionof Sr .However,
they did not define the defect functions for the generalized Schur functions. This was
done by the author in [27] by using theKreı̆n–Langer factorizations.With the definition
given therein, the main results of [3] were generalized to the Pontryagin state space
setting. The main subjects of [27] include some continuation of the study of products
of systems and the stability properties of passive systems, subjects treated earlier
by Saprikin et al. [9]. In the present paper, it will be shown that a concept of defect
functions can be defined in the casewhere all the spaces are Pontryagin spaces. The key
idea here is to use optimal minimal passive realizations and conservative embeddings.
By using such a definition, it is shown that one can generalize and improve some of
the main results from [3], using different proofs than those given in [3] or [27], see
Theorem 4.8. Furthermore, in Theorem 4.10, the main results from [7,8] concerning
the criterion when all the minimal realizations of a Schur function are unitarily similar,
is generalized to the present indefinite setting. The proof will be carried out entirely
by using the theory of passive systems, without applying Hardy space theory or the
theory of Hankel operators as in the proof provided in [8].

The paper is organized as follows. In Sect. 2 basic facts of linear systems, Julia
operators, dilations and embeddings are recalled. Moreover, Lemma 2.8 gives some
usefull representations and restrictions of passive systems. That lemma will be used
extensively later on in this paper.

In Sect. 3, the existence and basic properties of (∗-)optimal minimal realizations
are established. The main result of this section is Theorem 3.5.

The generalized defect functions are introduced in Sect. 4. In particularly, Theorem
4.10 in this section can be seen as the main result of the paper.
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2 Linear Systems, Dilations and Embeddings

Let � = (T�;X ,U ,Y; κ) be a linear system as in (1.1). The following subspaces

X c := span {ran AnB : n = 0, 1, . . .} (2.1)

X o := span {ran A∗nC∗ : n = 0, 1, . . .} (2.2)

X s := span {ran AnB, ran A∗mC∗ : n,m = 0, 1, . . .}, (2.3)

are called, respectively, controllable, observable and simple subspaces. The system is
said to be controllable (observable, simple) if X c = X (X o = X ,X s = X ) and
minimal if it is both controllable and observable.

When � � 0 is some symmetric neighbourhood of the origin, that is, z̄ ∈ �

whenever z ∈ �, then also

X c = span {ran (I − zA)−1B, z ∈ �} (2.4)

X o = span {ran (I − zA∗)−1C∗, z ∈ �} (2.5)

X s = span {ran (I − zA)−1B, ran (I − wA∗)−1C∗, z, w ∈ �} (2.6)

The system (1.1) can be expanded to a larger system without changing the transfer
function. It can be done by using the so-called defect operator and Julia operator,
see, respectively, (2.7) and (2.8) below. For a proof of the following theorem and more
details about the defects operators and Julia operators, see [24]. The basic information
about the indefinite inner product spaces and their operators can be recalled from
[11,15,24].

Theorem 2.1 Suppose that X1 and X2 are Pontryagin spaces with the same negative
index, and let A : X1 → X2 be a contraction. Then there exist Hilbert spacesDA and
DA∗ , linear operators DA : DA → X1, DA∗ : DA∗ → X2 with zero kernels and a
linear operator L : DA → DA∗ such that it holds

I − A∗A = DAD
∗
A, I − AA∗ = DA∗ D∗

A∗ , (2.7)

and the operator

UA :=
(

A DA∗
D∗

A −L∗
)

:
( X1
DA∗

)
→

(X2
DA

)
(2.8)

is unitary. Moreover, DA, DA∗ and UA are unique up to unitary equivalence.

The notion of dilation of a discrete time-invariant system has been introduced by
Arov [4]. A dilation of a system � = (A, B,C, D;X ,U ,Y; κ) is any system of the
form �̂ = ( Â, B̂, Ĉ, D; X̂ ,U ,Y; κ), where

X̂ =D ⊕ X ⊕ D∗, ÂD ⊂ D, Â∗D∗ ⊂ D∗, ĈD={0}, B̂∗D∗ = {0}. (2.9)
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The spaces D and D∗ are required to be Hilbert spaces. The system operator T�̂ of �̂

is of the form

T�̂ =

⎛
⎜⎜⎝

⎛
⎝A11 A12 A13

0 A A23
0 0 A33

⎞
⎠

⎛
⎝B1

B
0

⎞
⎠

(
0 C C1

)
D

⎞
⎟⎟⎠ :

⎛
⎜⎜⎝

⎛
⎝ D
X
D∗

⎞
⎠

U

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

⎛
⎝ D
X
D∗

⎞
⎠

Y

⎞
⎟⎟⎠ ,

Â =
⎛
⎝A11 A12 A13

0 A A23
0 0 A33

⎞
⎠ , B̂ =

⎛
⎝B1

B
0

⎞
⎠ , Ĉ = (

0 C C1
)
.

(2.10)

The system� is called a restriction of �̂.Recall that subspaceN of the Pontryagin
space H is regular if it is itself a Pontryagin space with the inherited inner product
of 〈·, ·〉H. The subspace N is regular precicely when N⊥ is regular, where ⊥ refers
to orthogonality with respect to the indefinite inner product of H. Since X clearly is
a regular subspace of X̂ , there exists the unique orthogonal projection PX from X̂
to X . Let Â�X be the restriction of Â to the subspace X . Then, the system � can be
represented as � = (PX Â�X , PX B̂, Ĉ�X , D; PX X̂ ,U ,Y; κ). A calculation show
that the transfer functions of the original system and its dilation coincide. Moreover, if
� is passive, then is any retriction of it. The following proposition states that a passive
system has a conservative dilation. For the Hilbert space case, this result is from [4],
and for the Pontryagin state space case, see [30]. The similar proof as in [4] and [30]
can be applied. For details, see the proof in [28, Proposition 2.3].

Proposition 2.2 Let � = (A, B,C, D;X ,U ,Y; κ) be a passive system. Then there
exists a conservative dilation �̂ = ( Â, B̂, Ĉ, D; X̂ ,U ,Y; κ) of �.

It is possible that D = {0} or D∗ = {0} in (2.9). In those cases, the zero space and
the corresponding row and column will be left out in (2.10). In particular, if the system
� with the system operator T as in (1.1) is isometric (co-isometric), then DT = 0
(DT ∗ = 0).

There is also an another way to expand the system (1.1), and it is called an embed-
ding. In this expansion, the state space and the main operator will not change. The
embedding of the system (1.1) is any system determined by the system operator

T�̃ =
(
A B̃
C̃ D̃

)
:
(X
Ũ

)
→

(X
Ỹ

)
⇐⇒

⎛
⎝ A

(
B B1

)
(
C
C1

) (
D D12
D21 D22

)
⎞
⎠ :

⎛
⎝ X(U

U ′
)⎞

⎠

→
⎛
⎝ X(Y

Y ′
)

⎞
⎠ ,
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where U ′ and Y ′ are Hilbert spaces. The transfer function of the embedded system is

θ�̃(z) =
(

D + zC(IX − zA)−1B D12 + zC(IX − zA)−1B1

D21 + zC1(IX − zA)−1B D22 + zC1(IX − zA)−1B1

)

=
(

θ�(z) θ12(z)
θ21(z) θ22(z)

)
,

where θ� is the transfer function of the original system. The embedded systems will
be needed in Sect. 4.

It will be proved in Proposition 2.4 below that the transfer function of any passive
system (1.1) is a generalized Schur function with index not larger than the negative
index of the state space. For a special case where incoming and outcoming spaces are
Hilbert spaces, this result is due to [30, Theorem 2.2]. The proof of the general case
follows the lines of Saprikin’s proof of the special case.

Lemma 2.3 Let � = (A, B,C, D;X ,U ,Y; κ) be a passive system with the transfer
function θ . Denote the system operator of � as T . If

DT =
(
DT,1

DT,2

)
: DT →

(X
U

)
DT ∗ =

(
DT ∗

,1

DT ∗
,2

)
: DT ∗ →

(X
Y

)
,

are defect operators of T and T ∗, respectively, then the identities

IY − θ(z)θ∗(w) = (1 − zw̄)G(z)G∗(w) + ψ(z)ψ∗(w), (2.11)

IU − θ∗(w)θ(z) = (1 − zw̄)F∗(w)F(z) + ϕ∗(w)ϕ(z), (2.12)

with

G(z) = C(IX − zA)−1, ψ(z) = DT ∗
,2

+ zC(IX − zA)−1DT ∗
,1
,

F(z) = (IX − zA)−1B, ϕ(z) = D∗
T,2

+ zD∗
T,1

(IX − zA)−1B,
(2.13)

hold for every z and w in a sufficiently small symmetric neighbourhood of the origin.

Proof By applying the results from [1, Theorem 1.2.4] and the identities in (2.7), the
results follow by straightforward calculations. For details, see the proof in [28, Lemma
2.4]. ��
Note that if � in Lemma 2.3 is isometric (co-isometric), then DT = 0 (DT ∗ = 0) and
therefore ϕ ≡ 0 (ψ ≡ 0).

Proposition 2.4 If � = (A, B,C, D;X ,U ,Y; κ) is a passive system, the transfer
function θ of � belongs to Sκ ′(U ,Y), where κ ′ ≤ κ.

Proof Denote the system operator of � as T . By Lemma 2.3, the kernel Kθ defined
as in (1.2) has a representation

Kθ (w, z) = G(z)G∗(w) + (1 − zw̄)−1ψ(z)ψ∗(w), (2.14)
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where G(z) and ψ(z) are defined as in (2.13). Since the negative index of X is κ and
the negative index of the Hilbert spaceDT ∗ is zero, it follows from [1, Lemma 1.1.1.],
that for any finite set of points w1, . . . , wn in the domain of holomorphy of θ and the
set of vectors {y1, . . . , yn} ⊂ Y, the Gram matrices

(〈
G∗(w j )y j ,G

∗(wi )yi
〉
X
)n
i, j=1

,
(〈

ψ∗(w j )y j , ψ
∗(wi )yi

〉
DT∗

)n
i, j=1

,

have, respectively, at most κ and zero negative eigenvalues.
The kernel (1− zw̄)−1 has no negative square, since it is the reproducing kernel of

the classical Hardy space H2(D). The Schur product theorem shows that the kernel
(1 − zw̄)−1ψ(z)ψ∗(w) has no negative square. Then it follows from [1, Theorem
1.5.5] that the kernel Kθ has at most κ negative square. That is, θ ∈ Sκ ′(U ,Y), where
κ ′ ≤ κ, and the proof is complete. ��
Definition 2.5 A passive realization � of a generalized Schur function θ ∈ Sκ(U ,Y)

is called κ-admissible if the negative index of the state space of � coinsides with the
negative index κ of θ.

In what follows, this paper deals mostly with the κ-admissible realizations. It will turn
out that the κ-admissible realizations of θ ∈ Sκ(U ,Y) are well behaved is some sense;
they have many similar propeties than the standard passive Hilbert space systems.

The following realizations theorem is well known, see [1, Theorems 2.2.1, 2.2.2
and 2.3.1].

Theorem 2.6 For a generalized Schur function θ ∈ Sκ(U ,Y) there exist realizations
�k = (Tk;Xk,U ,Y; κ), k = 1, 2, 3, of θ such that

(i) �1 is observable co-isometric;
(ii) �2 is controllable isometric;
(iii) �3 is simple conservative.

Conversely, if the system � has some of the properties (i)–(iii), then θ� ∈ Sκ(U ,Y),

where κ is the negative index of the state space of �.

Recall that a Hilbert subspace of the Pontryagin space X is a regular subspace
such that its negative index is zero. Conversely, anti-Hilbert subspace is a regular
subspace such that its positive index is zero. When U and Y happens to be Hilbet
spaces, the transfer function θ of the passive system � = (T�;X ,U ,Y; κ) belongs
to class Sκ(U ,Y) (with κ = ind−X ) if and only if (X s)⊥ is a Hilbert subspace [27,
Lemma 3.2]. In the case when U and Y are Pontryagin spaces with the same negative
index, the transfer function θ of the isometric (co-isometric, conservative) system
� = (T�;X ,U ,Y; κ) belongs to class Sκ(U ,Y) if and only if (X c)⊥ ((X o)⊥,(X s)⊥)
is a Hilbert subspace [1, Theorem 2.1.2]. For a passive system, one has the following
result.

Proposition 2.7 For a passive realization � = (A, B,C, D;X ,U ,Y; κ) of θ ∈
Sκ(U ,Y), spaces X c, X o and X s are regular and their orthogonal complements
are Hilbert subspaces.
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Proof Let � be a symmetric neighbourhood of the origin such that (I − zA)−1 and
(I − zA∗)−1 exist for every z ∈ �. Represent the kernel Kθ as in (2.14). Since Kθ has
κ negative square, a similar argument used in the proof of 2.4 shows that the kernel
K1(z, w) = G(z)G∗(w), where G(z) = C(I − zA)−1, has κ negative square. It
follows now from [1, Lemma 1.1.1’] that span{ran (I −wA∗)−1C∗, w ∈ �} contains
a κ-dimensional maximal anti-Hilbert subspace Xκ . Then, Xκ ⊕ (Xκ)⊥ = X is a
fundamental decomposition of X . Especially, (Xκ)⊥ is a Hilbert subspace of X . But

(
span{ran (I − wA∗)−1C∗, w ∈ �}

)⊥ = (X o)⊥ ⊂ (Xκ)⊥,

which implies that (X o)⊥ is a Hilbert subspace, and therefore its orthocomplement
X o is regular.

By duality argument, the space X c is a regular subspace and the space (X c)⊥ is a
Hilbert subspace. It easily follows from (2.1)–(2.3) that (X s)⊥ = (X c)⊥ ∩ (X o)⊥,

and therefore (X s)⊥ is also a Hilbert subspace and X s is regular. ��
It follows from the Proposition 2.7 above that the state space X of a κ-admissible
realization � of θ ∈ Sκ(U ,Y) can be decombosed to the controllable, observable and
simple parts. Using this fact, the lemma below, which will be used extensively, can be
proved.

Lemma 2.8 Let � = (A, B,C, D;X ,U ,Y; κ) be a passive system such that the
spaces (X o)⊥, (X c)⊥ and (X s)⊥ areHilbert subspaces ofX .Then the systemoperator
T of � has the following representations

T =
⎛
⎝

(
A1 A2
0 Ao

) (
B1
Bo

)
(
0 Co

)
D

⎞
⎠ :

⎛
⎝

(
(X o)⊥
X o

)

U

⎞
⎠ →

⎛
⎝

(
(X o)⊥
X o

)

Y

⎞
⎠ (2.15)

T =
⎛
⎝

(
A3 0
A4 Ac

) (
0
Bc

)
(
C1 Cc

)
D

⎞
⎠ :

⎛
⎝

(
(X c)⊥
X c

)

U

⎞
⎠ →

⎛
⎝

(
(X c)⊥
X c

)

Y

⎞
⎠ (2.16)

T =
⎛
⎝

(
A5 0
0 As

) (
0
Bs

)
(
0 Cs

)
D

⎞
⎠ :

⎛
⎝

(
(X s)⊥
X s

)

U

⎞
⎠ →

⎛
⎝

(
(X s)⊥
X s

)

Y

⎞
⎠ (2.17)

T =

⎛
⎜⎜⎝

⎛
⎝A′

11 A′
12 A′

13
0 A′ A′

23
0 0 A′

33

⎞
⎠

⎛
⎝B ′

1
B ′
0

⎞
⎠

(
0 C ′ C ′

1

)
D

⎞
⎟⎟⎠ :

⎛
⎜⎜⎝

⎛
⎝ (X o)⊥

PX oX c

X o ∩ (X c)⊥

⎞
⎠

U

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

⎛
⎝ (X o)⊥

PX oX c

X o ∩ (X c)⊥

⎞
⎠

Y

⎞
⎟⎟⎠

(2.18)

T =

⎛
⎜⎜⎝

⎛
⎝A′′

11 A′′
12 A′′

13
0 A′′ A′′

23
0 0 A′′

33

⎞
⎠

⎛
⎝B ′′

1
B ′′
0

⎞
⎠

(
0 C ′′ C ′′

1

)
D

⎞
⎟⎟⎠ :

⎛
⎜⎜⎝

⎛
⎝X c ∩ (X o)⊥

PX cX o

(X c)⊥

⎞
⎠

U

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

⎛
⎝X c ∩ (X o)⊥

PX cX o

(X c)⊥

⎞
⎠

Y

⎞
⎟⎟⎠

(2.19)
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The restrictions

�o = (Ao, Bo,Co, D;X o,U ,Y; κ) (2.20)

�c = (Ac, Bc,Cc, D;X c,U ,Y; κ) (2.21)

�s = (As, Bs,Cs, D;X s,U ,Y; κ) (2.22)

�′ = (A′, B ′,C ′, D; PX oX c,U ,Y; κ) (2.23)

�′′ = (A′′, B ′′,C ′′, D; PX cX o,U ,Y; κ) (2.24)

of � are passive, and �o is observable, �c is controllable, �s is simple, and �′
and �′′ are minimal. For any n ∈ N0 and any z in a sufficiently small symmetric
neighbourhood of the origin, it holds

An B = An
c Bc = An

s Bs, (2.25)

(I − zA)−1B = (I − zAs)
−1Bs = (I − zAc)

−1Bc, (2.26)

A∗nC∗ = A∗
o
nC∗

o = A∗
s
nC∗

s , (2.27)

(I − zA∗)−1C∗ = (I − zA∗
s )

−1C∗
s = (I − zA∗

o)
−1C∗

o . (2.28)

Moreover, if � is co-isometric (isometric), then so are �o and �s (�c and �s ).

Proof Since (X o)⊥, (X c)⊥ and (X s)⊥ are Hilbert spaces, the spaces X o, X c and
X s are regular subspaces with the negative index κ. It follows from the identities
(2.1)–(2.3) that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(X o)⊥, (X s)⊥ are A-invariant,

(X c)⊥, (X s)⊥ are A∗-invariant,
ranC∗ ⊂ X o ⊂ X s,

ran B ⊂ X c ⊂ X s,

, (2.29)

and the representations (2.15)–(2.17) follow. That is, �o, �c and �s are restrictions
of the passive system �, ans therefore they are passive.

Let T�k be the system operator of �k where k = o, c, s, and let x̂ ∈ X k ⊕ U and
x̆ ∈ X k ⊕ Y . Calculation show that T�k x̂ = T x̂ , where k = c, s and T ∗

�k
x̆ = T ∗ x̆

where k = o, s. It follows that if � is co-isometric (isometric), then so are �o and �s

(�c and �s).
Suppose x ∈ X o such that CoAn

ox = 0 for every n = 0, 1, 2, . . .. Then

CAnx = (
0 Co

) (
A1 A2
0 Ao

)n (
0
x

)
= CoA

n
ox = 0,

and the identity (2.2) implies that x ∈ X o ∩ (X o)⊥ = {0}. Thus x = 0, and it can
be deduced that �o is observable. Similar arguments show that �c is controllable and
�s is simple, the details will be omitted.



Minimal Passive Realizations of Generalized Schur… Page 11 of 34 35

Let u ∈ U , and n ∈ N0. Then, by (2.16) and (2.17),

AnBu =
(
A3 0
A4 Ac

)n (
0
Bc

)
=

(
0

An
c Bcu

)
= An

c Bcu

AnBu =
(
A5 0
0 As

)n (
0
Bs

)
=

(
0

An
s Bsu

)
= An

s Bsu,

and (2.25) holds. By Neumann series, (I − zA)−1B = ∑∞
n=0 z

n An B holds for all z
in a sufficiently small symmetric neighbourhood of the origin, and (2.26) follows now
from (2.25). The equalities (2.27) and (2.28) can be deduced similarly.

Since the orthocomplements (X o)⊥ and (X c)⊥ are Hilbert subspaces, it follows
from [30, Lemma 3.1] that PX oX c and PX cX o are regular subspaces, and it holds

X o ∩ (PX oX c)⊥ = X o ∩ (X c)⊥, X c ∩ (PX cX o)⊥ = X c ∩ (X o)⊥.

Since (X o)⊥ ⊂ (PX oX c)⊥, (X c)⊥ ⊂ (PX cX o)⊥ and all the spaces are regular,
simple calculations show that

(PX oX c)⊥ = (X o)⊥ ⊕ (X o ∩ (PX oX c)⊥) and (PX cX o)⊥

= (X c)⊥ ⊕ (X c ∩ (PX cX o)⊥).

Therefore,

X = PX oX c ⊕ (PX oX c)⊥ = (X o)⊥ ⊕ PX oX c ⊕ (X o ∩ (PX oX c)⊥)

= (X o)⊥ ⊕ PX oX c ⊕ (X o ∩ (X c)⊥),

and similarly, X = (X c ∩ (X o)⊥) ⊕ PX cX o ⊕ (X c)⊥. Since (X o ∩ (X c)⊥ and X c ∩
(X o)⊥ are also Hilbert spaces, the spaces PX oX c and PX cX o are Pontryagin spaces
with the negative index κ. By considering the properties in (2.29), the representations
(2.18) and (2.19) follow now easily. That is, �′ and �′′ are restrictions of �, and
therefore passive.

Denote X ′ := PX oX c. Represent the system operator T of � as in (2.18). Then

PX ′ AnB = PX ′

⎛
⎝A′

11 A′
12 A′

13
0 A′ A′

23
0 0 A′

33

⎞
⎠

n ⎛
⎝B ′

1
B ′
0

⎞
⎠ =

⎛
⎝ 0
A′n B ′
0

⎞
⎠ = A′n B ′,

and similarly A′∗nC ′∗ = PX ′ A∗nC∗. Therefore,

X ′c = span {ran A′n B ′ : n = 0, 1, . . .} = span {ran PX ′ AnB : n = 0, 1, . . .}
= PX ′span {ran AnB : n = 0, 1, . . .} = PX ′X c = PX ′ PX oX c = PX ′X ′ = X ′,

and similarly X ′o = PX ′X o = X ′, which implies that �′ is minimal. A similar
argument shows that �′′ is minimal, and the proof is complete. ��
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Note that in particular, Lemma 2.8 implies the existence of a minimal passive realiza-
tion of θ ∈ Sκ(U ,Y).

Definition 2.9 The restrictions �o, �c, �s, �
′, and �′′ in Lemma 2.8 are called,

respectively, the observable, the controllable, the simple (or proper), the first min-
imal and the second minimal restrictions of �.

The first minimal and the second minimal restrictions will be considered later in
Sects. 3 and 4.

Two realizations�1 = (A1, B1,C1, D1;X1,U ,Y; κ1) and�2 = (A2, B2,C2, D2;
X2,U ,Y; κ2) of the same function θ ∈ Sκ(U ,Y) are called unitarily similar if
D1 = D2 and there exists a unitary operator U : X1 → X2 such that

A1 = U−1A2U , B1 = U−1B2, C1 = C2U . (2.30)

In that case, it easily follows that κ1 = κ2. Unitary similarity preserves dynamical
properties of the system and also the spectral properties of the main operator. If two
realizations of θ ∈ Sκ (U ,Y) both have the same property (i), (ii) or (iii) of Theorem
2.6, then they are unitarily similar [1, Theorem 2.1.3].

The realizations �1 and �2 above are said to be weakly similar if D1 = D2 and
there exists an injective closed densely defined possible unbounded linear operator
Z : X1 → X2 with the dense range such that

Z A1x = A2Zx, C1x = C2Zx, x ∈ D(Z), and Z B1 = B2, (2.31)

where D(Z) is the domain of Z . In Hilbert state space case, a result of Helton [25]
and Arov [4] states that two minimal passive realizations of θ ∈ S(U ,Y) are weakly
similar. However, weak similarity preserves neither dynamical properties of the system
nor the spectral properties of its main operator.

Helton’s and Arov’s statement holds also in case where all the spaces are indefinite.
This result is stated for reference purposes. Similar argument as Hilbert space case can
be applied, definiteness of the inner product play no role. For a proof of special cases,
see [14, Theorem 7.1.3], [31, p. 702] and [27, Theorem 2.5]. Note that the realizations
are not assumed to be κ-admissible or passive.

Proposition 2.10 Two minimal realizations of θ ∈ Sκ(U ,Y) are weakly similar.

3 Optimal Minimal Systems

For κ-admissible realizations of θ ∈ Sκ(U ,Y), where U and Y are Pontryagin spaces
with the same negative index, one can form the similar theory of optimal minimal
passive systems as represented in the standard Hilbert space case in [6] and the Pon-
tryagin state space case in [30]. Techniques, definitions and notations to be used here
are similar to what appears in those papers.

Denote EX (x) = 〈x, x〉X for a vector x in an inner product space X . Following
[6,10,30], a passive realization � = (A, B,C, D;X ,U ,Y; κ) of θ ∈ Sκ(U ,Y) is
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called optimal if for any passive realization �′ = (A′, B ′,C ′, D′;X ′,U ,Y; κ) of θ,

the inequality

EX

(
n∑

k=0

Ak Buk

)
≤ EX ′

(
n∑

k=0

A′k B ′uk

)
, n ∈ N0, uk ∈ U , (3.1)

holds. On the other hand, the system � is called *-optimal if it is observable and

EX

(
n∑

k=0

Ak Buk

)
≥ EX ′

(
n∑

k=0

A′k B ′uk

)
, n ∈ N0, uk ∈ U , (3.2)

holds for every observable passive realization �′ of θ. The requirement for observ-
ability must be included for avoiding trivialities, since otherwise every isometric
realization of θ would be ∗-optimal; see Lemma 3.3 below and [6, Proposition 3.5
and example on page 144].

In the definition of optimality and ∗-optimality, the requirement that the considered
realizations are κ-admissible is essential, as the example below shows.

Example 3.1 Let � = (A, B,C, D;X ,U ,Y; κ) and �′ = (A′, B ′,C ′, D′;X ′,U ,

Y; κ ′),where κ < κ ′,be passive realization of θ ∈ Sκ(U ,Y).Suppose that (3.1) holds.
By Lemma 2.8, if (3.1) holds for �, it holds also for the controllable restriction �c =
(Ac, Bc,Cc, D′;X c,U ,Y; κ) of �. For any vector x of the form x = ∑M

n=0 A
n
c Bcun

where {un} ⊂ U and M ∈ N0, define

Rx =
M∑
n=0

A′n B ′un .

It is easy to deduce that R is a linear relation. Moreover, since �c is controllable by
Lemma 2.8, R is densely defined. Since (3.1) holds, R is contractive. It follows now
from [1, Theorem 1.4.2] that R can be extended to be everywhere defined contractive
linear operator. Since ind−X c = κ < κ ′ = ind−X ′, it follows from [24, Theorem
2.4] that linear operator from X c to X ′ cannot be contractive, and hence (3.1) cannot
hold.

It will be shown in Theorem 3.5 below that an optimal (∗-optimal) minimal realiza-
tion exists, and it can be constructed by taking the first (second) minimal restriction,
introduced in Definition 2.9, of simple conservative realizations. More lemmas will
be needed before that.

Lemma 3.2 Let � = (A, B,C, D;X ,U ,Y; κ) is a passive realization of θ ∈
Sκ(U ,Y), and let �s = (As, Bs,Cs, D;X s,U ,Y; κ) be the restriction of � to the
simple subspace. Then, the first (second) minimal restrictions of � and �s coinside.

Proof Only the proof of the statement concerning about the second minimal restric-
tions is provided, since the other case is similar. Tomake the notation less cumbersome,
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write X s = Xp, where p refers to proper part. By Lemma 2.8, the equalities
(2.25) and (2.27) hold, and it easily follows that it holds X o = X o

p , X c = X c
p,

(X o)⊥ = (X s)⊥ ⊕ (X o
p )

⊥ and (X c)⊥ = (X s)⊥ ⊕ (X c
p)

⊥, where orthogonal
complements (X o

p )
⊥ and (X c

p)
⊥ are taken with respect to the space Xp. Therefore

PX cX o = PX c
p
X o

p ⊂ X s = Xp, and consequently,

PPX c
p
X o

p
Ap�PX c

p
X o

p
= PPX cX o A�X s �PX cX o = PPX cX o A�PX cX o ,

PPX c
p
X o

p
Bp = PPX cX o B, Cp�PX c

p
X o

p
= C�PX cX o ,

which shows that the second minimal restrictions of � and �s co-inside. ��
To prove the (∗-)optimality of a system, the following lemma is helpful.

Lemma 3.3 Let � = (A, B,C, D;X ,U ,Y, κ), �̂ = ( Â, B̂, Ĉ, D; X̂ ,U ,Y, κ) and
�′ = (A′, B ′,C ′, D;X ′,U ,Y; κ) be realizations of θ ∈ Sκ(U ,Y) such that � is
passive, �̂ is a passive dilation of � and �′ is the first minimal restriction of �̂. Then

EX ′

(
n∑

k=0

A′k B ′uk

)
≤ EX

(
n∑

k=0

Ak Buk

)
, n ∈ N0, uk ∈ U . (3.3)

Moreover, for any isometric realization �̆ = ( Ă1, B̆1, Č1, D; X̆ ,U ,Y, κ) of θ, it
holds

EX

(
n∑

k=0

Ak Buk

)
≤ EX̆

(
n∑

k=0

Ăk B̆uk

)
, n ∈ N0, uk ∈ U . (3.4)

Note that Proposition 2.2 guarantees the existence of a passive dilation �̂ of � with
the properties described above.

Proof Since �̂ is a dilation of �, the system operator T�̂ has a representation

T�̂ =
(
Â B̂
Ĉ D

)
=

⎛
⎜⎜⎝

⎛
⎝A11 A12 A13

0 A A23
0 0 A33

⎞
⎠

⎛
⎝B1

B
0

⎞
⎠

(
0 C1 C

)
D

⎞
⎟⎟⎠ :

⎛
⎜⎜⎝

⎛
⎝ D
X
D∗

⎞
⎠

U

⎞
⎟⎟⎠→

⎛
⎜⎜⎝

⎛
⎝ D
X
D∗

⎞
⎠

Y

⎞
⎟⎟⎠ ,

(3.5)

where D and D∗ are Hilbert spaces. On the other hand, by Lemma 2.8, �̂ can also be
represented as

T�̂ =

⎛
⎜⎜⎝

⎛
⎝A′

11 A′
12 A′

13
0 A′ A′

23
0 0 A′

33

⎞
⎠

⎛
⎝B ′

1
B ′
0

⎞
⎠

(
0 C ′ C ′

1

)
D

⎞
⎟⎟⎠ :

⎛
⎜⎜⎝

⎛
⎝X1
X ′
X3

⎞
⎠

U

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

⎛
⎝X1
X ′
X3

⎞
⎠

Y

⎞
⎟⎟⎠ ,
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where X1 = (X̂ o)⊥,X ′ = PX̂ oX̂ c and X3 = X̂ o ∩ (X̂ c)⊥. The spaces X1 and X3 are
Hilbert spaces, and X ′ is a Pontryagin space with the negative index κ. Let n ∈ N0
and {uk}nk=0 ⊂ U . Since X3 ⊂ (X̂ c)⊥, it holds

EX ′

(
n∑

k=0

A′k B ′uk

)

= EX̂

(
PX ′

n∑
k=0

Âk B̂uk

)

= EX̂

(
n∑

k=0

Âk B̂uk

)
− EX̂

(
PX1

n∑
k=0

Âk B̂uk

)
− EX̂

(
PX3

n∑
k=0

Âk B̂uk

)

= EX̂

(
n∑

k=0

Âk B̂uk

)
− EX̂

(
PX1

n∑
k=0

Âk B̂uk

)
. (3.6)

With D and D∗ as in (3.5), the identities in (2.9) hold. Therefore, it follows from
the identities (2.1) and (2.2) that D∗ ⊂ (X̂ c)⊥ and D ⊂ (X̂ o)⊥ = X1. A similar
calculation as above yields then

EX

(
n∑

k=0

Ak Buk

)
= EX̂

(
n∑

k=0

Âk B̂uk

)
− EX̂

(
PD

n∑
k=0

Âk B̂uk

)
. (3.7)

The inclusionD ⊂ X1 and the fact thatD andX1 are Hilbert spaces now implies the
inequality EX̂

(
PD

∑n
k=0 Â

k B̂uk
) ≤ EX̂

(
PX1

∑n
k=0 Â

k B̂uk
)
. It follows now from

the Eqs. (3.6) and (3.7) that EX ′
(∑n

k=0 A
′k B ′uk

) ≤ EX
(∑n

k=0 A
k Buk

)
, and the

inequality (3.3) is proved.
Assume that �̂ is isometric. Since D is a Hilbert space, it follows from (3.7) that

EX

(
n∑

k=0

Ak Buk

)
≤ EX̂

(
n∑

k=0

Âk B̂uk

)
. (3.8)

By Lemma 2.8, the controllable restriction �̂c = ( Âc, B̂c, Ĉc, D; X̂ c,U ,Y, κ) of
�̂ is controllable isometric, and for every n = 0, 1, 2, . . . , it holds Ân B̂ = Ân

c B̂c.

Therefore

EX̂

(
n∑

k=0

Âk B̂uk

)
= EX̂ c

(
n∑

k=0

Âk
c B̂cuk

)
. (3.9)

Similar argument show that if �̆c = ( Ăc, B̆c, C̆c, D; X̆ c,U ,Y, κ) is the controllable
restriction of the isometric system �̆ = ( Ă, B̆, Č, D; X̆ ,U ,Y, κ), then �̆c is con-
trollable isometric and it holds
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EX̆

(
n∑

k=0

Ăk B̆uk

)
= EX̆ c

(
n∑

k=0

Ăk
c B̆cuk

)
. (3.10)

But �̂c and �̆c are unitarily similar, and therefore

EX̂ c

(
n∑

k=0

Âk
c B̂cuk

)
= EX̆ c

(
n∑

k=0

Ăk
c B̆cuk

)
. (3.11)

By combining (3.8)–(3.11), the inequality (3.4) follows. ��
Remark 3.4 It follows from the inequality (3.4) of Lemma 3.3 that if there exists an
observable isometric realization of θ ∈ Sκ(U ,Y), then it is ∗-optimal.

In the standard Hilbert space case, results of Arov [5] show that there exist optimal
minimal realizations of a Schur function. The construction was based on the existence
of the defect functions, see Sect. 4. Arov et. all provided new geometric proofs of
these results in [6]. Saprikin used those new proofs and generalized Arov’s results to
Pontryagin state space case in [30]. It will be proved next that Arov’s results holds in
the case when all spaces are Pontryagin spaces. The geometric proofs in [6] can still
be applied in the present setting with few appropriate changes.

Theorem 3.5 Let θ ∈ Sκ(U ,Y), where U and Y are Pontryagin spaces with the same
negative index. Then:

(i) The first minimal restriction of a simple conservative realization of θ is optimal
minimal;

(ii) The minimal passive system �∗ is optimal if and only if the dual system � is
*-optimal minimal;

(iii) The second minimal restriction of a simple conservative realization of θ is *-
optimal minimal;

(iv) Optimal (*-optimal) minimal systems are unique up to unitary similarity, and
every optimal (*-optimal) minimal realization of θ is the first minimal restriction
(second minimal restriction) of some simple conservative realization of θ.

Proof (i) Let �′ = (A′, B ′,C ′, D;X ′,U ,Y; κ) be the first minimal restriction of
a simple conservative realization �̂′ = ( Â′, B̂ ′, Ĉ ′, D; X̂ ′,U ,Y; κ) of θ ∈
Sκ(U ,Y). Let � = (A, B,C, D;X ,U ,Y; κ) be the first minimal restriction
of some conservative realization of θ such that its state space has negative index
κ. To prove that �′ is optimal, Lemma 3.3 shows that it is enough to prove

EX ′

(
n∑

k=0

A′k B ′uk

)
≤ EX

(
n∑

k=0

Ak Buk

)
, n ∈ N0, uk ∈ U . (3.12)

By Lemma 3.2, it can be assumed that � is the first minimal restriction of some
simple conservative realization �̂ = ( Â, B̂, Ĉ, D; X̂ ,U ,Y; κ) of θ. Since �̂ and
�̂′ are both simple conservative, they are unitarily similar, so there exists a unitary
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operator U : X̂ → X̂ ′ such that Â = U−1 Â′U , B̂ = U−1 B̂ ′ and Ĉ = Ĉ ′U .

Easy calculations shows that X̂ ′o = U X̂ o, X̂ ′c = U X̂ c, (X̂ ′o)⊥ = U (X̂ o)⊥,

(X̂ ′c)⊥ = U (X̂ c)⊥ and PX̂ ′oX̂ ′c = U PX̂ oX̂ c. In particular,

PX = PPX̂o X̂ c = U−1PPX̂ ′o X̂ ′cU = U−1PX ′U ,

which implies

A= PX Â�X =U−1PX ′ Â′U�X =(U�X )−1PX ′ Â′�X ′U�X = (U�X )−1A′U�X
B=(U�X )−1B ′, C = C ′U�X .

It follows that � and �′ are unitarily similar and the corresponding unitary
operator is U0 = U�X . Then

EX

(
n∑

k=0

Ak Buk

)
= EX

(
U−1
0

n∑
k=0

A′k B ′uk

)
= EX ′

(
n∑

k=0

A′k B ′uk

)
.

Therefore (3.12) holds, and �′ is an optimal minimal system.
(ii) Let �∗ = (A∗,C∗, B∗, D∗;X ,Y,U; κ) be an optimal minimal passive real-

ization of θ# ∈ Sκ(Y,U). Then � = (A, B,C, D;X ,U ,Y; κ) is a minimal
passive realization of θ ∈ Sκ(U ,Y). Consider an arbitrary observable pas-
sive realization �′ = (A′, B ′,C ′, D;X ′,U ,Y; κ) of θ ∈ Sκ(U ,Y). Then
�

′∗ = (A
′∗,C ′∗, B ′∗, D∗;X ′,Y,U; κ) is a controllable passive realization of

θ#. For a vector of the form x ′ = ∑n
k=0 A

′∗kC ′∗yk, where n ∈ N0 and yk ∈ Y,

define

Sx ′ =
n∑

k=0

(A∗)kC∗yk .

Since �
′∗ is controllable and �∗ is optimal, the domain of S is dense, and it

holds

EX (Sx) = EX

(
n∑

k=0

(A∗)kC∗yk

)
≤ EX ′

(
n∑

k=0

A
′∗kC ′∗yk

)
= EX ′(x).

That is, S is a contractive linear relationwith the dense domain. Then [1, Theorem
1.4.4] shows that the closure of S, which is still denoted as S, is contractive every-
where defined linear operator from X ′ → X . Since X ′ and X are Pontryagin
spaces with the same negative index, S∗ : X → X ′, is contractive as well. The
transfer functions of the � and �′ coincide, and therefore CAmB = C ′A′k B ′
for every m ∈ N0. By definition, S(A

′∗)mC ′∗ = (A∗)mC∗, or what is the same
thing, C ′A′mS∗ = CAm, for every m ∈ N0. Then also

C ′A′m+k B ′ = CAm Ak B = C ′A′mS∗Ak B for m, k ≥ 0.
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This implies A′k B ′ = S∗Ak B and moreover S∗ (∑n
k=0 A

k Buk
) = ∑n

k=0 A
′k B ′

uk, since the system �′ is observable. Therefore,

EX ′

(
n∑

k=0

A′k B ′uk

)
= EX ′

(
S∗

(
n∑

k=0

Ak Buk

))
≤ EX

(
n∑

k=0

Ak Buk

)
,

since S∗ is contractive. This proves that � is ∗-optimal.
Suppose then that � = (A, B,C, D;X ,U ,Y; κ) is minimal passive ∗-optimal
realization of θ ∈ Sκ(U ,Y). Then �∗ is a minimal passive realization
of θ# ∈ Sκ(Y,U). To prove the optimality of �∗, it suffices to consider
all the minimal passive realizations of θ#; see Lemma 3.3. Let �

′∗ =
(A

′∗,C ′∗, B ′∗, D∗;X ′,Y,U; κ) be a minimal passive realization of θ#. Then
�′ is a minimal passive realization of θ. Since � is ∗-optimal, the inequality

EX

(
n∑

k=0

Ak Buk

)
≥ EX ′

(
n∑

k=0

A′k B ′uk

)
, n ∈ N0, uk ∈ U ,

holds. Define Kx = ∑n
k=0 A

′k B ′uk for x = ∑n
k=0 A

k Buk . Using similar tech-
niques as above, K can be extended to be a contractive operator from X → X ′
such that

K ∗(A′∗)kC ′∗ = (A∗)kC∗.

Since K ∗ is contractive,

EX

(
n∑

k=0

A∗kC∗yk

)
= EX

(
K ∗

n∑
k=0

A
′∗kC ′∗yk

)
≤ EX ′

(
n∑

k=0

A
′∗kC ′∗yk

)
,

for {yk} ⊂ Y . This shows that �∗ is optimal.
(iii) Let� be a simple conservative realization of θ ∈ Sκ(U ,Y). Then�∗ is a simple

conservative realization of θ#, and the first minimal restriction �∗′ of �∗ is
optimal minimal by the part (i). By using the representations (2.18) and (2.19)
from Lemma 2.8, it is easy to deduce that the dual system of �∗′ is the second
minimal restriction�′′ of�, and it follows from the part (ii) that�′′ is ∗-optimal.

(iv) Only the proofs of the claims considering optimal minimal realizations will be
given, since the claims considering ∗-optimal minimal realizations can be proved
analogously. Let � j = (A j , Bj ,C j , D;X j ,U ,Y; κ) for j = 1, 2, be optimal
minimal realizations of θ ∈ Sκ(U ,Y). In a sufficiently small neighbourhood of
the origin, the transfer functions θ�1 and θ�2 of the systems �1 and �2 have the
Neumann series and they coincide, so C1Ak

1B1 = C2Ak
2B2 for k = 0, 1, 2, . . .

Define

Ux =
N∑

k=0

Ak
2B2uk (3.13)
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for a vector x of the form x = ∑N
k=0 A

k
1B1uk, where {uk} ∈ U . Since �1 is

controllable, such vectors are dense in X1. Because �2 is controllable as well,
vectors of the form Ux are dense in X2.

Since �1 and �2 both are optimal realizations, EX1(x) = EX1(Ux), and there-
foreU is an isometric linear relation with the dense domain and the dense range.
It follows now from [1, 1.4.2] that the closure ofU is a unitary operator, which is
still denoted as U . Then, trivially B1 = U−1B2. For vector x in (3.13), it holds

U A1x = U
N∑

k=0

Ak+1
1 B1uk =

N∑
k=0

Ak+1
2 B2uk = A2Ux .

It follows that U A1x = A2Ux holds in a dense set, and therefore by continuity,
everywhere. Thus A1 = U−1A2U . Moreover, for k = 0, 1, 2, . . . , one con-
cludes C1Ak

1B1 = C2Ak
2B2 = C2U Ak

1B1. Since spank∈N0
Ak
1B1 is dense in X1,

it must be C1 = C2U . It has been shown that the unitary operator U has all the
properties of (2.30), and therefore �1 and �2 are unitarily similar.
Suppose then that � = (A, B,C, D;X ,U ,Y; κ) is an optimal minimal realiza-
tion of θ. Let �̂0 = ( Â0, B̂0, Ĉ0, D; X̂0,U ,Y; κ) be some simple conservative
realization of θ. Lemma 2.8 shows that the system operator of �̂ can be repre-
sented as

T�̂0
=

⎛
⎜⎜⎝

⎛
⎝A′

11 A′
12 A′

13
0 A′ A′

23
0 0 A′

33

⎞
⎠

⎛
⎝B ′

1
B ′
0

⎞
⎠

(
0 C ′ C ′

1

)
D

⎞
⎟⎟⎠ :

⎛
⎜⎜⎝

⎛
⎝X1
X ′
X2

⎞
⎠

U

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

⎛
⎝X1
X ′
X2

⎞
⎠

Y

⎞
⎟⎟⎠ ,

where X1 = (X̂ o)⊥,X ′ = PX̂ oX̂ c and X2 = X̂ o ∩ (X̂ c)⊥. Now �′ =
(A′, B ′,C ′, D;X ′,U ,Y; κ) is the first minimal restriction of �̂, and it follows
from part (i) that�′ is optimal minimal, andmoreover, as proved above, unitarily
similar with �. Therefore, there exists a unitary operatorU : X → X ′ such that
A = U−1A′U , B = U−1B ′ and C = C ′U . Define

T�̂ =

⎛
⎜⎜⎝

⎛
⎝A′

11 A′
12U A′

13
0 A U−1A′

23
0 0 A′

33

⎞
⎠

⎛
⎝B ′

1
B
0

⎞
⎠

(
0 C C ′

1

)
D

⎞
⎟⎟⎠ :

⎛
⎜⎜⎝

⎛
⎝X1
X
X2

⎞
⎠

U

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

⎛
⎝X1
X
X2

⎞
⎠

Y

⎞
⎟⎟⎠ ,

and let �̂ be the system corresponding the system operator T�̂ . Easy calculations
show that �̂ and �̂0 are unitarily similar and

Û =
⎛
⎝I 0 0
0 U 0
0 0 I

⎞
⎠ :

⎛
⎝X1
X
X2

⎞
⎠ →

⎛
⎝X1
X ′
X2

⎞
⎠
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is the corresponding unitary operator. Therefore �̂ is a simple conservative sys-
tem. Now Û maps PX oX c to PX ′oX ′c, and ÛX ′ = UX ′ = X . It follows that
� is the first minimal restriction of �̂. ��

4 Generalized Defect Functions

If U and Y are Hilbert spaces, it is well known that S ∈ S(U ,Y) is holomorphic in the
unit disk and it has non-tangential contractive strong limit values almost everywhere
(a.e.) on the unit circle T. Therefore, S can be extended to L∞(U ,Y) function, that is,
the class of weakly measurable a.e. defined and essentially bounded L(U ,Y)-valued
functions on T. Then it follows from [29, Theorem V.4.2] that there exist a Hilbert
space K and an outer function ϕS ∈ S(U ,K) such that

ϕ∗
S(ζ )ϕS(ζ ) ≤ I − S∗(ζ )S(ζ ) (4.1)

a.e. on T, and if a function ϕ̂ ∈ S(U , K̂), where K̂ is a Hilbert space, has this same
property, then

ϕ̂∗(ζ )ϕ̂(ζ ) ≤ ϕ∗
S(ζ )ϕS(ζ ) (4.2)

a.e. on T. The function ϕS is called the right defect function of S. For the notions
of the outer functions, ∗-outer functions, inner functions and ∗-inner functions, see
[29, Chapter V]. From [29, Theorem V.4.2] it is also easy to deduce that there exists
a Hilbert space H and a ∗-outer function ψS ∈ S(H,Y) such that

ψS(ζ )ψ∗
S (ζ ) ≤ I − S(ζ )S∗(ζ ) (4.3)

a.e. ζ ∈ T and if a Schur function ψ̂ ∈ S(Ĥ,Y) has this same property, then

ψS(ζ )ψ∗
S (ζ ) ≤ ψ̂(ζ )ψ̂∗(ζ ). (4.4)

The function ψS is called the left defect function of S. Both ϕS and ψS are unique
up to a unitary constant.

The theory of the defect functions is considered, for instance, in [17–19]. Various
connections of defect functions and passive realizations can be found in [3,7,8]. The
definition of the defect functionswas generalized for functions S ∈ Sκ(U ,Y) in [27] by
using the Kreı̆n–Langer factorizations and the fact that all functions in Sκ(U ,Y) have
also contractive strong limit values a.e. on T. If U and Y are Pontryagin spaces such
that their negative index is not zero, the defect functions cannot be defined similarly
as in the Hilbert space setting, since the boundary values of S ∈ Sκ(U ,Y) may not be
Hilbert space contractions. However, in the Hilbert state space case, Arov and Saprikin
showed in [10] that for a function S = Sr B−1

r ∈ Sκ(U ,Y), where Sr B−1
r is the right

Kreı̆n–Langer factorization of S, the existence of the optimal minimal realization of
S is connected with the existence of the right defect function of Sr . In general, similar
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connections exist with certain functions constructed by embedded systems, and those
function are called defect functions; this is the approach taken here.

Suppose that � = (A, B,C, D;X ,U ,Y; κ) is a passive realization of θ ∈
Sκ(U ,Y). Denote the system operator of � by T . Theorem 2.1 shows that T has
a Julia operator of the form

(
T DT ∗
D∗
T −L∗

)
:
(X ⊕ U

DT ∗

)
→

(X ⊕ Y
DT

)
, (4.5)

whereDT ∗ andDT are Hilbert spaces, DT ∗ D∗
T ∗ = I − T T ∗ and DT D∗

T = I − T ∗T
such that DT and DT ∗ have zero kernels. Then, one can form the Julia embedding
�̃ of the system �; recall the embeddings from page 5. That is, the corresponding
system operator T�̃ of the embedding �̃ is a Julia operator of T , and it is of the form

T�̃ =

⎛
⎜⎜⎝

A
(
B DT ∗

,1

)
(

C
D∗
T,1

) (
D DT ∗

,2

D∗
T,2

−L∗

)
⎞
⎟⎟⎠ :

⎛
⎝ X( U

DT ∗

)⎞
⎠ →

⎛
⎝ X( Y

DT

)⎞
⎠ , (4.6)

where DT ∗ =
(
DT ∗

,1

DT ∗
,2

)
and DT =

(
DT,1

DT,2

)
. The transfer function of the Julia embed-

ding is

θ�̃(z) =
(

D + zC(I − zA)−1B DT ∗
,2

+ zC(I − zA)−1DT ∗
,1

D∗
T,2

+ zD∗
T,1

(I − zA)−1B −L∗ + zD∗
T,1

(I − zA)−1DT ∗
,1

)

=
(

θ(z) ψ(z)
ϕ(z) χ(z)

)
. (4.7)

Moreover, the identities (2.11) and (2.12) of Lemma 2.3 hold for the system � and
its transfer function θ . If U and Y are Hilbert spaces, similar arguments as used in the
proof of Proposition 2.4 and in the proof of [27, Lemma 3.2] show that ϕ, ψ and χ

are generalized Schur functions with the index not larger than κ .

Definition 4.1 Let U and Y be Pontryagin spaces with the same negative index. Let
� = (A, B,C, D;X ,U ,Y; κ) be an optimal minimal passive realization of θ ∈
Sκ(U ,Y), and let �̃ be the Julia embedding of it, represented as in (4.6). Then the
function ϕ in (4.7) is defined to be the right defect function ϕθ of θ.

Moreover, let � = (A, B,C, D;X ,U ,Y; κ) be a ∗-optimal minimal passive real-
ization of θ ∈ Sκ(U ,Y), and let �̃ be the Julia embedding of it, represented as in
(4.6). Then the function ψ in (4.7) is defined to be the left defect function ψθ of θ.

Remark 4.2 Since optimal (∗-optimal) minimal realizations are unitarily similar by
Theorem 3.5, and Julia operators for contractive operator are essentially unique by
Theorem 2.1, it can be deduced that the defect functions are essentially uniquely
defined by θ ∈ Sκ(U ,Y). The definition above is also slightly different from the one
given in [27] for functions in the class Sκ(U ,Y), where U and Y are Hilbert spaces.
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The right defect function of θ ∈ Sκ(U ,Y) and the left defect function of θ# are
closely related to each other.

Lemma 4.3 For θ ∈ Sκ(U ,Y), it holds ϕ#
θ = ψθ# and ψ#

θ = ϕθ#

Proof Let � = (A, B,C, D;X ,U ,Y; κ) be an optimal (∗-optimal) minimal realiza-
tion of θ. Denote the system operator of � as T , and the Julia operator T�̃ of T as in
(4.6). By Theorem 3.5, the system �∗ is ∗-optimal (optimal) minimal, and a calcula-
tion shows that T ∗̃

�
is the Julia operator of T ∗. Now the results follow means of (4.7).

��
In the Hilbert space setting, S ∈ S(U ,Y) has factorizations of the form

S = Si So = S∗oS∗i ,

where Si ∈ S(Y ′,Y) is inner, So ∈ S(U ,Y ′) is outer, S∗o ∈ S(U ′,Y) is ∗-outer,
S∗i ∈ S(U ,U ′) is ∗-inner, and Y ′ and U ′ are Hilbert spaces [29, p. 204]. The next
proposition shows that for an ordinary Schur function θ ∈ S(U ,Y), the outer factor
of ϕθ and the ∗-outer factor of ψθ defined above coincide essentially with the usual
definition of defect functions.

Proposition 4.4 Let θ ∈ Sκ(U ,Y), where U and Y are Hilbert spaces. Then

ϕ∗
θ (ζ )ϕθ (ζ ) ≤ I − θ∗(ζ )θ(ζ )

a.e. on T, and if a generalized Schur function ϕ̂ ∈ Sκ ′(U , K̂), where K̂ is a Hilbert
space and κ ′ does not depend on κ , has this same property, then

ϕ̂∗(ζ )ϕ̂(ζ ) ≤ ϕ∗
θ (ζ )ϕθ (ζ ),

a.e. onT. If κ = 0, denote the inner and outer factors ofϕθ asϕθi andϕθo , respectively.
Then, ϕθi is an isometric constant, and if ϕ

′ is an outer function with properties (4.1)
and (4.2), then it holds Uϕθo = ϕ′, where U is a unitary operator.

Moreover,

ψθ(ζ )ψ∗
θ (ζ ) ≤ I − θ(ζ )θ∗(ζ )

a.e. ζ ∈ T and if a generalized Schur function ψ̂ ∈ Sκ ′(Ĥ,Y), where K̂ is a Hilbert
space and κ ′ does not depend on κ , has this same property, then

ψθ(ζ )ψ∗
θ (ζ ) ≤ ψ̂(ζ )ψ̂∗(ζ )

a.e. ζ ∈ T.If κ = 0, denote the ∗-inner and ∗-outer factors of ψθ as ψθ∗i and ψθ∗o ,
respectively. Then, ψθ∗i is a co-isometric constant, and if ψ

′ is a ∗-outer function with
properties (4.3) and (4.4), then it holds ψθ∗oU

′ = ψ ′, where U ′ is a unitary operator.
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Proof Let � = (A, B,C, D;X ,U ,Y; κ) be an optimal minimal realization of θ.

Denote the system operator of � as T , the Julia operator T�̃ of T as in (4.6) and the
function ϕ = ϕθ as in (4.7). Since T�̃ is unitary, the operator

T�′ =
⎛
⎝ A B(

C
D∗
T,1

) (
D
D∗
T,2

)⎞
⎠ :

(X
U

)
→

⎛
⎝ X( Y

DT

)⎞
⎠ .

must be isometric, and therefore the system

�′ =
(
A, B,

(
C
D∗
T,1

)
,

(
D
D∗
T,2

)
;X ,U ,

( Y
DT

)
; κ

)

is an isometric realization of the function
(

θ
ϕθ

)
. Since �′ is an embedding of the

minimal system �, the system �′ is also minimal. It follows from Theorem 2.6
that

(
θ
ϕθ

) ∈ Sκ (U ,Y ⊕ DT ) . Since contractive boundary values of generalized Schur
functions exist for a.e. ζ ∈ T, it holds

(
θ∗(ζ ) ϕ∗

θ (ζ )
) (

θ(ζ )

ϕθ (ζ )

)
≤ I ⇐⇒ ϕ∗

θ (ζ )ϕθ (ζ ) ≤ I − θ∗(ζ )θ(ζ )

for a.e. ζ ∈ T.

Suppose that a function ϕ̂ ∈ Sκ ′(U , K̂), where K̂ is a Hilbert space, has the property
ϕ̂∗(ζ )ϕ̂(ζ ) ≤ I − θ∗(ζ )θ(ζ ) for a.e. ζ ∈ T. Since the function ϕ̂ has the left Kreı̆n–
Langer factorization of the form ϕ̂ = B−1

ϕ̂ ϕ̂l , where ϕ̂l is an ordinary Schur function,
it holds ϕ̂∗(ζ )ϕ̂(ζ ) = ϕ̂∗

l (ζ )ϕ̂l(ζ ) for a.e. ζ ∈ T. Then the function

θ̆ =
(

θ

ϕ̂l

)
, (4.8)

belongs to the Schur class Sκ

(U ,Y ⊕ K̂)
, and it has a controllable isometric realiza-

tion �̆ with the system operator

T�̆ =
⎛
⎝ A1 B1(

C1
C2

) (
D1
D2

)
⎞
⎠ :

(X1
U

)
→

⎛
⎝ X1(Y

K̂
)

⎞
⎠ . (4.9)

That is,

θ̆ (z) =
(

θ(z)
ϕ̂l(z)

)
=

(
D1
D2

)
+ z

(
C1
C2

)
(I − zA1)

−1B1

=
(
D1 + zC1(I − zA1)

−1B1

D2 + zC2(I − zA1)
−1B1

)
.
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It follows that

�1 = (A1, B1,C1, D1;X1,U ,Y; κ) (4.10)

is a realization of θ, and since �̆ is isometric and K̂ is a Hilbert space, the system �1
is passive. Since T�̆ is isometric, the defect operator DT

�̆
of T�̆ is zero, and it follows

from Lemma 2.3 that

I − θ̆∗(z)θ̆(z) = I − θ∗(z)θ(z) − ϕ̂∗
l (z)ϕ̂l(z)

=
(
1 − |z|2

)
B∗
1 (I − zA∗

1)
−1)(I − zA1)

−1B1
(4.11)

whenever the expressions are meaningful. By combining the identities (2.12) and
(4.11) for optimal minimal realization �, one gets

(
1 − |z|2

)
B∗
1 (I − zA∗

1)
−1(I − zA1)

−1B1 + ϕ̂∗
l (z)ϕ̂l(z)

=
(
1 − |z|2

)
B∗(I − zA∗)−1(I − zA)−1B + ϕθ

∗(z)ϕθ (z)
(4.12)

for every z in a sufficiently small symmetric neighbourhood � of the origin. Since the
system � is optimal, if follows by using Neumann series that

〈
B∗(I − zA∗)−1(I − zA)−1Bu, u

〉

= EX
(
(I − zA)−1Bu

)
= EX

( ∞∑
n=0

AnBuzn
)

≤EX1

( ∞∑
n=0

An
1B1uz

n

)
=

〈
B∗
1 (I − zA∗

1)
−1(I − zA1)

−1B1u, u
〉

for every z ∈ � and for every u ∈ U . Then it follows from (4.12) that ϕ̂∗
l (z)ϕ̂l(z) ≤

ϕθ
∗(z)ϕθ (z) for every z ∈ �. By continuity,

ϕ̂∗
l (ζ )ϕ̂l(ζ ) = ϕ̂∗(ζ )ϕ̂(ζ ) ≤ ϕθ

∗(ζ )ϕθ (ζ ) (4.13)

for a.e. ζ ∈ T.

Next suppose that κ = 0. By combining (4.2) and (4.13), it can be deduced that

ϕ
′∗(ζ )ϕ′(ζ ) = ϕθ

∗(ζ )ϕθ (ζ ) = ϕθo
∗(ζ )ϕθi

∗(ζ )ϕθi (ζ )ϕθo(ζ ) = ϕθo
∗(ζ )ϕθo(ζ )

for a.e. ζ ∈ T. Then it follows from [29, Proposition V.4.1] that ϕ′ = Uϕθo , where
U is a unitary operator. If one puts an outer function ϕ̂l = ϕθo = U−1ϕ′ in (4.8) and
constructs the operator T�̆ as in (4.9) , the construction of an optimal minimal system
used in the proof of [5, Theorem 7] shows that the associated system �1 in (4.10) is
optimal. Since � is also optimal, for every z ∈ D, it holds
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B∗(I − zA∗)−1(I − zA)−1B = B∗
1 (I − zA∗

1)
−1(I − zA1)

−1B1.

Then it follows from (4.12) that ‖ϕθi (z)ϕθo(z)u‖ = ‖ϕθo(z)u‖ for every z ∈ D and
every u ∈ U . The outer function ϕθo(z) has a dense range for every z ∈ D [29,
Proposition V.2.4]. This implies that ϕθi (z) is an isometry for every z ∈ D, and
arguing as in the proof of [29, Proposition V.2.1] one deduces that ϕθi is an isometric
constant. The claims involving ϕθ are proved.

The claims involving ψθ follow now directly by applying Lemma 4.3. ��
Lemma 4.5 Let �0 = (A0, B0,C0, D;X0,U ,Y; κ) and � = (A, B,C, D;X ,U ,

Y; κ) be passive realizations of θ ∈ Sκ(U ,Y) such that �0 is optimal. If for every z
and w in a sufficiently small symmetric neighbourhood � of the origin the equality

B∗(I − wA∗)−1(I − zA)−1B = B∗
0 (I − wA∗

0)
−1(I − zA0)

−1B0 (4.14)

holds, then � is optimal.

Proof It follows from Lemma 2.8 that the system operator T� of� can be represented
as in (2.16), the restriction�c = (Ac, Bc,Cc, D;X c,U ,Y; κ) of� to the controllable
subspace X c is controllable passive, and (2.25) and (2.26) hold.

Define Rx = ∑M
j=1 A

j
0B0u j for the vectors of the form x = ∑M

j=1 A
j
c Bcu j ,

where M ∈ N and {u j }Mj=1 ⊂ U . Since �c is controllable, the domain of R is dense.
Moreover,�0 is optimal, and therefore EX0 (Rx) ≤ EX c (x) .That is, R is contractive,
and it follows from [1, Theorem 1.4.2] that the closure of R is everywhere defined
contractive linear operator. It is still denoted by R. Since

(I − zAc)
−1Bc =

∞∑
n=0

zn An
c Bc, (I − zA0)

−1B0 =
∞∑
n=0

zn An
0B0,

holds for every z in a sufficiently small symmetric neighbourhood � of the origin, it
follows by continuity that R

(
(I − zAc)

−1Bcu
) = (I − zA0)

−1B0u for every z ∈ �

and u ∈ U . Then

R

⎛
⎝ M∑

j=1

(I − z j Ac)
−1Bcu j

⎞
⎠ =

M∑
j=1

(IX0 − z j A0)
−1B0u j ,

for all M ∈ N, {z j }Mj=1 ⊂ �, and {u j }Mj=1 ⊂ U . Equalities (2.26) and (4.14) imply
now

EX c

⎛
⎝ M∑

j=1

(I − z j Ac)
−1Bcu j

⎞
⎠=

M∑
j=1

M∑
k=1

〈
B∗
c (I−zk A

∗
c)

−1(I−z j Ac)
−1Bcu j , uk

〉
U

=
M∑
j=1

M∑
k=1

〈
B∗
0 (I − zk A

∗
0)

−1(I − z j A0)
−1B0u j , uk

〉
U
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= EX0

⎛
⎝ M∑

j=1

(I − z j A0)
−1B0u j

⎞
⎠

= EX0

⎛
⎝R

⎛
⎝ M∑

j=1

(I − z j Ac)
−1Bcu j

⎞
⎠

⎞
⎠ .

This implies that R is isometric in span{ran (I − zA1)
−1B1, z ∈ �}, which is a dense

set, since �1 is controllable. Since R is bounded, it is now isometric everywhere, and
it follows that �c is optimal. Then it follows from (2.25) that � is optimal, and the
proof is complete. ��

Themain results of [3, Theorem 1.1] were generalized to the Pontryagin state space
setting in [27, Theorem 4.4]. By using Definition 4.1, it can be shown that parts of this
result, as well as [8, Theorem 1], hold also in the casewhen all the spaces are indefinite.
Moreover, certain parts of [3, Theorem 1.1], [8, Theorem 1] and [27, Theorem 4.4]
can be improved. Before stating these results, some lemmas are needed.

Lemma 4.6 Let θ ∈ Sκ(U ,Y). Then the following statements are equivalent:

(i) all κ-admissible minimal passive realizations of θ are unitarily similar;
(ii) there exists a minimal passive realization of θ such that it is both optimal and

∗-optimal;
(iii) allκ-admissibleminimal passive realizations of θ are both optimal and ∗-optimal.

Proof (i)⇒ (iii). Suppose (i). Let the systems�1 = (A1, B1,C1, D;X1,U ,Y; κ) and
�2 = (A2, B2,C2, D;X2,U ,Y; κ) be, respectively, minimal passive and optimal (∗-
optimal) minimal passive realizations of θ. Let U be the unitary operator from X1 to
X2 with the properties described in (2.30). An easy calculation shows that

EX2

(
n∑

k=0

Ak
2B2uk

)
= EX1

(
U

n∑
k=0

Ak
1B1uk

)
= EX1

(
n∑

k=0

Ak
1B1uk

)

for every u ∈ U and for every n = 0, 1, 2, . . .which implies that�1 is actually optimal
(∗-optimal), and therefore (iii) holds.

(iii) ⇒ (ii). The claim (iii) trivially implies (ii).
(ii) ⇒ (i). Suppose (ii). Let the systems �1 = (A1, B1,C1, D;X1,U ,Y; κ) and

�2 = (A2, B2,C2, D;X2,U ,Y; κ) be, respectively, optimal and ∗-optimal minimal
passive realizations of θ. Let Z be the weak similarity mapping from X1 to X2 with
the properties described in (2.31). It follows from (2.31) that all elements of the form∑n

k=0 A
k
1B1uk belongs to the domain of Z , and Z

(∑n
k=0 A

k
1B1uk

) = ∑n
k=0 A

k
2B2uk .

Recall also here the construction of Z in the proof of [27, Theorem 2.5]. Since �1 is
both optimal and ∗-optimal,

EX2

(
n∑

k=0

Ak
2B2uk

)
= EX2

(
Z

n∑
k=0

Ak
1B1uk

)
= EX1

(
n∑

k=0

Ak
1B1uk

)
.
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Then it follows from [1, Theorem 1.4.2] that the operator Z has a unitary extension,
and the properties in (2.30) follow by continuity. Therefore �1 and �2 are unitarily
similar. Since unitary similarity clearly is a transitive property, (i) holds, and the proof
is complete. ��
Lemma 4.7 If the system � = (A, B,C, D;X ,U ,Y; κ) is an optimal passive real-
ization of θ ∈ Sκ(U ,Y), then X c ⊂ X o.

Proof According to Proposition 2.7, the spaces X o and (X o)⊥ are regular sub-
spaces and (X o)⊥ is a Hilbert space. It follows from Lemma 2.8 that the system
operator T of � can be represented as in (2.15), and the restriction �o =
(Ao, Bo,Co, D;X o,U ,Y; κ) of � to the observable subspace X o is observable pas-
sive realization of θ. For n = 0, 1, 2, . . ., it holds

An =
(
An
1 f (n)

0 An
0

)
,

where f (n) is an operator depending on n. Then for any N ∈ N0 and any {un}Nn=0 ⊂ U ,

it holds

N∑
n=0

AnBun =
(∑N

n=0

(
An
1B1un + f (n)Boun

)
∑N

n=0 A
n
o Boun

)
=

⎛
⎝P(X o)⊥

(∑N
n=0 A

nBun
)

PX o

(∑N
n=0 A

nBun
)

⎞
⎠ .

This implies

EX

(
N∑

n=0

AnBun

)
=E(X o)⊥

(
P(X o)⊥

(
N∑

n=0

AnBun

))
+ EX o

(
N∑

n=0

An
o Boun

)
.

But since � is optimal and (X o)⊥ is a Hilbert space, one deduces P(X o)⊥(∑N
n=0 A

nBun
)

= 0. That is, span{AnB : n = 0, 1, . . .} ⊂ X o and since X o is

closed, also span{AnB : n ∈ N0} = X c ⊂ X o. ��
The next Theorem contains promised extensions for some results of [3]. In partic-

ular, the fact that statements (I)(b), (II)(b) and (III)(b) implies the other statements,
respectively, in parts (I), (II) and (III), is new also in the Hilbert space setting.

Theorem 4.8 Let θ ∈ Sκ(U ,Y), where U and Y are Pontryagin spaces with the same
negative index.

(I) The following statements are equivalent:

(a) ϕθ ≡ 0;
(b) all κ-admissible controllable passive realizations of θ are minimal isometric;
(c) there exists an observable conservative realization of θ;
(d) all simple conservative realization of θ are observable;
(e) all observable co-isometric realizations of θ are conservative.



35 Page 28 of 34 L. Lilleberg

(II) The following statements are equivalent:

(a) ψθ ≡ 0;
(b) all κ-admissible observable passive realization of θ areminimal co-isometric;
(c) there exists a controllable conservative realization of θ;
(d) all simple conservative realization of θ are controllable;
(e) all controllable isometric realizations of θ are conservative.

(III) The following statements are equivalent:

(a) ϕθ ≡ 0 and ψθ ≡ 0;
(b) all κ-admissible simple passive realization of θ are minimal conservative;
(d) there exists a minimal conservative realization of θ.

Proof (I) (a) ⇒ (b). Suppose (a). Let the systems � = (A, B,C, D;X ,U ,Y; κ) and
�0 = (A0, B0,C0, D;X0,U ,Y; κ) be, respectively, a controllable passive and an
optimal minimal passive realizations of θ. Represent the Julia embeddings of � and
�0 as in (4.6). Then, (2.12) holds for �. Since ϕθ ≡ 0, if follows from the definition
of ϕθ that

I − θ∗(w)θ(z) = (1 − zw̄)B∗
0 (I − w̄A∗

0)
−1(I − zA0)

−1B0

holds for every z and w in a sufficiently small symmetric neighbourhood � of the
origin. Since �0 is optimal, by considering the Neuman series of (I − zA0)

−1B0 and
(I − zA0)

−1B0, one deduces that

B∗
0 (I − z̄ A∗

0)
−1(I − zA0)

−1B0 ≤ B∗(I − z̄ A∗)−1(I − zA)−1B, z ∈ �.

Then it holds ϕ∗(z)ϕ(z) ≤= 0 for every z ∈ �. But since ϕ(z) is an opera-
tor whose range belongs to the Hilbert space DT , this implies ϕ(z) = D∗

T,2
+

zD∗
T,1

(I − zA)−1B = 0 for z ∈ �. It follows that D∗
T,2

= 0. Since � is control-

lable, span{(I − zA)−1B; z ∈ �} is dense in X by the identity (2.4) and therefore
also D∗

T,1
= 0. Then DT = 0, so T is isometric, and � is a controllable isometric

system. In particular, if � is chosen to be minimal passive; for the existence, see
Lemma 2.8, the previous argument shows that � is a minimal isometric realization of
θ. Since all controllable isometric realizations of θ are unitarily similar, they are now
also minimal, and (b) holds.

(b) ⇒ (c). Suppose (b). Let �′ = (A′, B ′,C ′, D;X ′,U ,Y; κ) be an optimal mini-
mal passive realization of θ. The existence of �′ follows from Theorem 3.5 (i). By
assumption, �′ is isometric. It follows from Theorem 3.5 (iv) that �′ is the first mini-
mal restriction of the simple conservative system � = (A, B,C, D;X ,U ,Y; κ). By
Lemma 2.8, the system operator T� of � can be represented as in (2.18), where now
X ′ = PX oX c.

T�′ of �′ is isometric and T� is unitary, an easy calculation using the fact that the
range space (X o)⊥ is a Hilbert space shows that B ′

1 = 0 and A′
12 = 0 in (2.18). But

then for every x ∈ (X o)⊥ and every n = 0, 1, 2, . . .,
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B∗A∗nx = (
0 B ′∗ 0

)
⎛
⎝A′

11
∗ 0 0

0 A′
0
∗ 0

A′
13

∗ A′
23

∗ A′
33

∗

⎞
⎠

n ⎛
⎝x
0
0

⎞
⎠ = 0.

That is, (X o)⊥ ⊂ (X c)⊥ and thereforeX c ⊂ X o. Since � is simple, this implies now
X o = X . Then � is observable, and (c) holds.

(c) ⇒ (a). Suppose (c). Let � = (A, B,C, D;X ,U ,Y; κ) be an observable con-
servative realization of θ. By Lemma 2.8, � can be represented as in (2.18). The first
minimal restriction (2.23) of � is an optimal minimal realization of θ by Theorem
3.5 (i). But since � is observable, X o = X and (X o)⊥ = {0}. It follows that the
reprentations (2.16) and (2.18) coinsides. That is, the first minimal restriction �′ is
just a restriction to the controllable subspace of �. By Lemma 2.8, �′ is now isomet-
ric. Thus if one constructs a Julia operator of T�′ as in (4.5), DT�′ = 0, and then it
follows from the definition of ϕθ and (4.7) that ϕθ ≡ 0, and (a) holds.

The equivalences of the statements (c), (d) and (e) followeasily from the facts that all
observable co-isometric realizations of θ are unitarily similar, all simple conservative
realization of θ are unitarily similar and unitary similarity preserves the structural
properties of the system and system operator. The part (I) is proven.

(II) The proof is analogous to the proof of the part (I), and the details are omitted.
(III) (a) ⇒ (b). Suppose (a). By combining the parts (I) and (II), it follows that all

controllable or observable passive realizations of θ are minimal conservative. Con-
sider a simple passive realization �= (A.B,C, D;X ,U ,Y; κ) of θ. It follows from
Lemma 2.8 that the contractive system operator T of� can be represented as in (2.15),
where the restriction �o in (2.20) is observable passive, and therefore now minimal
conservative. Then the system operator T�o of �o is unitary. Let x ∈ X o. Then, by
contractivity of T and unitarity of T�o

E

⎛
⎝

⎛
⎝A1 A2 B1

0 Ao Bo

0 Co D

⎞
⎠

⎛
⎝0
x
0

⎞
⎠

⎞
⎠ = E

⎛
⎝

⎛
⎝A2x
Aox
Cox

⎞
⎠

⎞
⎠ = E (A2x) + E

((
A0x
Cox

))

= E (T x) ≤ E(x) = E(T�o x) = E

((
A0x
Cox

))
.

Since A2x ∈ (X o)⊥ and (X o)⊥ is a Hilbert space, it follows that A2 = 0. If one
chooses u ∈ U , a similar argument as above shows that B1 = 0. Then for any n ∈ N,
it holds

AnB =
(
A1 0
0 Ao

)n (
0
Bo

)
=

(
0

An
o Bo

)
and

A∗nC∗ =
(
A∗
1 0
0 A∗

o

)n (
0
C∗
o

)
=

(
0

A∗n
o C∗

o

)
.

This is only possible if (X o)⊥ = 0, since � is simple. But then the systems �0 and
� coincide, so the system � is minimal conservative, and (b) holds.
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Now (b) trivially implies (c), and the fact that (c) implies (a) follows by combining
the parts (I) and (II). The proof is complete. ��
Remark 4.9 IfU andY are Hilbert spaces, it follows from [27, Lemma 3.2] that simple
passive realizations of θ ∈ Sκ(U ,Y) are κ-admissible. Therefore, in that case it is not
necessary to assume the considered systems to be κ-admissible in Lemma 4.6 and
Theorems 4.8 and 4.10, since the other assumptions already guarantee it. However,
if U and Y are Pontryagin spaces with the same negative index, it is not known that
are all simple passive, or even all minimal passive, realizations of θ ∈ Sκ(U ,Y)

κ-admissible.

If ϕθ ≡ 0 (ψθ ≡ 0), then Theorem 4.8 shows that all κ-admissible minimal passive
realizations of θ ∈ Sκ(U ,Y) are minimal isometric (co-isometric). In particular, they
are controllable isometric (observable coisometric), and it follows from Theorem 2.6
that they are unitarily similar. This situation can occur also when the defect functions
do not vanish identically. In what follows, the range of ϕθ and the domain of ψθ

will be denoted, respectively, by Dϕθ and Dψθ . In the Hilbert space setting, it is well
known [18,19] that for a standard Schur function θ ∈ S(U ,Y), there exists a function
χθ ∈ L∞(Dψθ ,Dϕθ ) such that the function

(ζ) :=
(

θ(ζ ) ψθ (ζ )

ϕθ (ζ ) χθ (ζ )

)
(4.15)

has contractive values for a.e. ζ ∈ T. Under certain normalizing conditions for the
functions ϕθ andψθ , the function χθ is unique. In the Hilbert space setting, the impor-
tant properties of the functionχθ (ζ ) established byBoiko andDubovoj,were bublished
without proof in the paper [16]. In general, χθ may has negative Fourier coefficients
and therefore it is not a Schur function. In that case the function  in (4.15) is not
a Schur function either. However, Arov and Nudelmann showed in [7,8] that  is a
Schur function if and only if all minimal passive realizations of θ are unitarily similar.
This result will be generalized to the indefinite setting in the following theorem. The
proof uses optimal and ∗-optimal realizations as in [7,8], but it is more elementary.

Theorem 4.10 Let θ ∈ Sκ(U ,Y), where U and Y are Pontryagin spaces with the
same negative index, and let ϕθ andψθ be defect functions of θ. Then all κ-admissible
minimal passive realizations of θ are unitarily similar if and only if there exist an
L(Dψθ ,Dϕθ )-valued function χθ analytic in a neighbourhood of the origin such that

 =
(

θ ψθ

ϕθ χθ

)
∈ Sκ

(( U
Dψθ

)
,

( Y
Dϕθ

))
(4.16)

Proof Suppose that all κ-admissible minimal passive realizations of θ ∈ Sκ (U ,Y) are
unitarily similar. Then it follows from Lemma 4.6 that every κ-admissible minimal
passive realization is optimal and ∗-optimal. Take any κ-admissible minimal passive
realization � of θ and consider its Julia embedding as in (4.6). Then the transfer
function (4.7) of the Julia embedding belongs to the class Sκ (U ⊕ DT ∗ ,Y ⊕ DT ) ,
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and since� is both optimal and ∗-optimal, the upper right corner and lower left corner
of (4.7) are defect functions of θ.Choose χθ = χ in (4.7), and the necessity is proven.

Suppose then that there exists an L(Dψθ ,Dϕθ )-valued function χθ such that  in
(4.16) belongs to the class Sκ

(U ⊕ Dψθ ,Y ⊕ Dϕθ

)
. It suffices to show that there

exists minimal passive realization � of θ such that it is both optimal and ∗-optimal;
see Lemma 4.6. Let

� = (A, B̃, C̃, D̃;X ,U ⊕ Dψθ ,Y ⊕ Dϕθ ; κ)

be a simple conservative realization of ∈ Sκ

(U ⊕ Dψθ ,Y ⊕ Dϕθ

)
.Then the system

operator T of � can be represented as

T =
⎛
⎝ A

(
B B1

)
(
C
C1

) (
D D12
D21 D22

)
⎞
⎠ :

⎛
⎝ X( U

Dψθ

)⎞
⎠ →

⎛
⎝ X( Y

Dϕθ

)⎞
⎠ .

In a sufficiently small symmetric neighbourhood � of the origin, it holds

(z) =
(

θ(z) ψθ (z)
ϕθ (z) χθ (z)

)

=
(

D + zC(I − zA)−1B D12 + zC(I − zA)−1B1

D21 + zC1 + (I − zA)−1B D22 + zC1(I − zA)−1B1

)
.

The spaces Dϕθ and Dψθ are Hilbert spaces, and therefore it follows that the system
� = (A, B,C, D;X ,U ,Y; κ) is a passive realization of θ. Since� is conservative,
Lemma 2.3 shows that

I − (z)∗(w) =
(
IY − θ(z)θ∗(w) − ψθ(z)ψ∗

θ (w) −θ(z)ϕ∗
θ (w) − ψθ(z)χ∗

θ (w)

−ϕθ (z)θ∗(w) − χθ (z)ψ∗
θ (w) IDϕθ

− ϕθ (z)ϕ∗
θ (w) − χθ (z)χ∗

θ (w)

)

= (1 − w̄z)C̃(I − zA)−1(I − w̄A∗)−1C̃∗

= (1 − w̄z)

(
C(I − zA)−1(I − w̄A∗)−1C∗ C(I − zA)−1(I − w̄A∗)−1C∗

1
C1(I − zA)−1(I − w̄A∗)−1C∗ C1(I − zA)−1(I − w̄A∗)−1C∗

1

)

I − ∗(w)(z) =
(
IU − θ∗(w)θ(z) − ϕ∗

θ (w)ϕθ (z) −θ∗(w)ψθ (z) − ϕ∗
θ (w)χθ (z)

−ψ∗
θ (w)θ(z) − χ∗

θ (w)ϕθ (z) IDψθ
− ψ∗

θ (w)ψθ (z) − χ∗
θ (w)χθ (z)

)

= (1 − w̄z)

(
B∗(I − w̄A∗)−1(I − zA)−1B B∗(I − w̄A∗)−1(I − zA)−1B1

B∗
1 (I − w̄A∗)−1(I − zA)−1B B∗

1 (I − w̄A∗)−1(I − zA)−1B1

)
.

That is,

IY − θ(z)θ∗(w) = (1 − w̄z)C(I − zA)−1(I − w̄A∗)−1C∗ + ψθ(z)ψ
∗
θ (w), (4.17)

IU − θ∗(w)θ(z) = (1 − w̄z)B∗(I − w̄A∗)−1(I − zA)−1B + ϕ∗
θ (w)ϕθ (z). (4.18)

An easy calculation and Lemma 4.3 show that the Eq. (4.17) is equivalent to

IY − θ#
∗
(w)θ#(z)=(1 − w̄z)C(I − w̄A)−1(I − zA∗)−1C∗ + ϕθ#

∗(w)ϕθ# (z).
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Let �′ = (A′, B ′,C ′, D;X ′,U ,Y; κ) and �′′ = (A′′, B ′′,C ′′, D;X ′′,U ,Y; κ) be,
respectively, an optimal minimal and a ∗-optimal minimal realizations of θ . It follows
from Theorem 3.5 (ii) that �′′∗ is an optimal minimal realization of θ#. Then, by the
definition of ϕθ and ϕθ# , it holds

IU − θ∗(w)θ(z) = (1 − wz)B ′∗(I − w̄A′∗)−1(I − zA′)−1B ′ + ϕ∗
θ (w)ϕθ (z)

IY − θ#
∗
(w)θ#(z) = (1 − wz)C ′′(I − w̄A′′)−1(I − zA′′∗)−1C ′′∗ + ϕθ#

∗(w)ϕθ# (z).

It follows that

B∗(I − w̄A∗)−1(I − zA)−1B = B ′∗(I − w̄A′∗)−1(I − zA′)−1B ′,
C(I − w̄A)−1(I − zA∗)−1C∗ = C ′′(I − w̄A′′)−1(I − zA′′∗)−1C ′′∗.

By using Lemma 4.5, it can be deduced that � and �∗ are optimal systems. Then it
follows fromLemma4.7 thatX c = X o and thereforeX s = X c = X o.ByLemma2.8,
the restriction �s = (As, Bs,Cs, D;X s,U ,Y; κ) of � to the simple subspace X s is
simple, and it holds AnB = An

s Bs and A∗nC∗ = A∗
s
nC∗

s for every n ∈ N0. That is,�s

and�∗
s also are optimal systems.Moreover, they areminimal sinceX s = X c = X o. It

follows now fromTheorem 3.5 (ii) that�s is also ∗-optimal, and the proof is complete.
��
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