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Evaluation of cross-quantile dependence and causality between non-ferrous metals and clean energy indexes  
 

Abstract 
This paper analyzes the cross-quantile dependence and causality between non-ferrous metals and 
clean energy indices by employing data from November 2003 to May 2019. Specifically, we 
utilize the time-varying copulas to examine the asymmetric connectedness among the assets. 
Based on the assessed dependence, we utilize the time-static and time-varying cross-
quantilogram approach to evaluate the asymmetric dependence across different quantiles. 
Finally, we employ a Granger-causality in quantiles analysis to assess the causal relationship 
across different quantiles of the return distributions of the underlying assets. By utilizing time-
varying copulas, we report that the conditional dependence between the assets is time-varying 
and asymmetric with the potential for tail dependence. Our results from the cross-quantilogram 
analysis provide further evidence that the interconnectedness is asymmetric across quantiles, and 
it increases with the increase in lags. In addition, we report that extreme market conditions 
positively influence the dependence structure. Finally, our findings from Granger-causality in 
quantiles indicate bidirectional causality among assets that intensifies with the increase in lag 
order. These findings are important for governmental policies that aim at mitigating the impact 
of climate change by transforming the global energy landscape towards clean and renewable 
energy sources. 
JEL Classification: G10, G12, G15, Q21, C58 
Keywords: Clean energy prices, Non-ferrous metals, cross-quantilogram, cross-quantile causality, copula  
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1. Introduction 
Climate change and energy security issues have emerged as the primary driving forces to 
transform the landscape of the global energy sector towards renewables or clean energy sources 
[1]. Climate risks intensified by global warming have also started manifesting its importance in 
energy portfolio diversification towards de-carbonization. Globally, the agreed goal is to limit 
the anthropogenic Green House Gas (GHG) emission to restrain the disasters of climate change. 
The anthropogenic CO2 emission, one of the major GHGs, is responsible for an increase in global 
warming, which is expected to be higher towards the mid of the current century if the emission is 
left uncontrolled for [2,3]. The global energy-related CO2 emission reached a peaked level of 
33.1 giga-ton (gt) in 2018 [4]. The fallout of these events is observed in the energy sector with 
the dominance of clean energy like renewables towards the energy supply portfolio. The global 
energy sector is expected to witness a gradual shift towards clean energy sources [1]. According 
to [5], numerous institutional investors have dedicated to divesting their investment from the 
traditional energy sectors. As per Renewables Information 2018 [6], the share of renewable energy, 
which contributed 24% of the world‘s power demand in 2017, is expected to increase by 30% by 
2023. An upsurge of investments in renewables to a level of $279.8 billion in 2017 makes the 
cumulative investments in the sector to $2.9 trillion since 2004 [7], providing an additional thrust 
to the renewables in the global energy sector. 
A similar clean energy thrust is also observed in the transportation sector. Sales of electric 
vehicles (EVs) are gaining momentum at an unprecedented rate. In 2018, the global electric car 
population witnessed a staggering growth of 155% as compared to the previous year triggered by 
significant cost reduction and improved performance of car batteries. High penetration of EVs 
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has the potential to cut oil demand by 2.5 to 4.3 million barrels per day [mb/d] by 2030 under 
different policy scenarios as projected by [8]. 
The growth momentum also continues in the financial market performance of clean energy 
stocks, where both clean energy and clean technology stocks have frequently outperformed the 
MSCI Global and S&P 500 index. The inception of clean energy shares as a new asset class has 
attracted both the investors and the academic world [9] to a great extent. Both clean energy and 
clean technology stocks are closely linked [10,11] and are considered to be risky assets [12–14], 
compelling the need to identify a safe-haven asset for itself. So, do the traditional strategic 
commodities, crude-oil and gold, uphold the glory of safe asset classes even after the global 
financial crisis (GFC)? [15] have rightly pointed out that the identification of a safe-haven asset 
has become a challenge post the GFC as ―many studies have questioned the safe-haven ability of 
gold during that period; when the interest-rate bound reached zero, and the financialization of 
gold investing intensified.‖ Also, [16] has shown that the traditional strategic safe-haven 
commodities, crude oil, and gold may act as a weak safe-haven for clean energy stocks. This 
indicates that the search for safe-haven asset class for clean energy stocks may go beyond crude 
oil and gold as they cannot possibly unwind the embedded risks of clean energy indices anymore 
[17–19].  
The emergence of clean energy stocks as an attractive asset class triggers the demand for ceratin 
non-ferrous metals, which are the basic building blocks for the development of clean energy 
technologies [1], thereby creating a new market for those metals.1 The consumption of some of 
these non-ferrous metals has already witnessed an exponential growth. For instance, Gallium 
                                                           1For example, solar photovoltaic (SPV) and wind energy require elements like Silicon, Copper, Silver, Tin, Cobalt, Manganese, Chromium, Molybdenum, Nickel, BariumIndium, Gallium, Selenium, Cadmium, Tellurium and rare earth metals like Dysprosium, Neodymium, Praseodymium, Yttrium, Terbium while energy storage and electrical grids needs Alluminium, Copper, Germanium, steel, Zinc, Tin, Lithium, Cobalt, Nickel, Manganese, Vanadium, Chromium among others. 
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consumption has increased by 1800% for the period 1971-2011, while consumption for 
Tellurium, Lithium, and Cobalt has increased by 900%, 800%, and 400%, respectively [20]. The 
experts believe that there may be a prerequisite of 3200 million tonnes (mt) of Steel, 310 mt of 
Aluminum, and 40 mt of Copper [21] to support the uprising of clean energy. In addition, 
Lithium is expected to increase by over 1000% over the long-run [22,23] along with gallium 
(400–600%), neodymium (150–380%) and indium (300%) [20]. Therefore, the supply of these 
strategic metals shall greatly influence the clean energy transition.  
The investors have sensed the importance of these metals as soon as they become tradable assets 
as the non-ferrous metal index. This index appears to be comparable to the other conventional 
asset classes like bonds and equities, as established by [24]. Several studies have reported the 
importance of non-ferrous metals for the transition of clean energy. Still, the non-ferrous metal 
index, as a separate asset class, has received less attention from both the academic world and 
investors in terms of its connectedness, portfolio diversification, and hedging potential with clean 
energy stocks [24]. The safe-haven properties of the non-ferrous metals as established by [25–
27] can open up a window of opportunity to diversify and hedge against clean energy stocks. 
Our study addresses these knowledge gaps by examining the nonlinear and tail dependence of 
non-ferrous metal index, ‗Dow Jones Non-ferrous price index‘, with two clean energy indices, 
‗Wilderhill clean energy‘ and ‗S&P Global clean energy‘, and with one clean technology index, 
‗ARCA Tech index‘. The literature, focusing on clean energy asset returns primarily 
concentrated on examining the connectedness dynamics between conventional fossil fuels, 
financial markets, and commodities with that of clean energy stocks.2 However, the 
interconnectedness between non-ferrous metals and clean energy assets remains uncharted. So, 
                                                           2 See, for example, [11,17,19], among others. 
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as long as clean energy and non-ferrous metals are fundamentally related, the outcomes of this 
study will be useful to the investors for their strategic investment decisions at different time 
scales [16]. 
We fill the pivotal rift in several ways. First, we evaluate the less-explored non-ferrous metals 
interdependence in mean and quantiles to explore the possibility of non-ferrous metal stock as a 
safe asset class for clean indices and clean technology stocks. To the best of our knowledge, this 
is the first paper in this strand of literature examining the temporal dependence and causality in 
mean and quantiles of non-ferrous metals and clean energy and technology indices. 
Second, we contribute to the literature by employing a time-varying copula approach, cross-
quantilogram correlation (CQC), and Granger-causality in quantiles to explore the possibility of 
non-ferrous metal stock as a safe asset class for clean energy. A copula approach is preferred 
over conventional correlations and multivariate GARCH models3 as it captures dependence both 
on average and during extreme co-movements [16,19]. However, due to its inability to 
incorporate lags, it assumes the connectedness dynamics as time-invariant. Therefore, we employ 
the CQC approach to estimate the dependence in the tails of the distributions and to include lags 
of variables. The employment of the CQC approach helps to evaluate (i) whether the series tend 
to exhibit extreme co-movement and tail dependence behavior and (ii) whether extremely low 
and high returns across various assets are symmetrically dependent. 
Third, we analyze the mean and quantile causal relationships between non-ferrous metals and 
clean energy assets. This is naturally the next step in our analysis to evaluate whether the 
observed dependence in quantiles is resulted due to a causal link between the assets. 
                                                           3The conventional cointegration approaches also fail to capture the co-movements and connectedness of different asset classes in an average (a normal) and extreme market conditions [52,75]. 
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Furthermore, in order to capture the investor trading behavior, we consider different lag 
specification and also look at the sensitiveness between quantile dependence and quantile 
causality at different lags. There is a difference between directionality and dependence. In our 
study, we consider the correlation structure among the investigated variables under the different 
states (normal vs downward and upward market) by utilizing quantile dependence approach. 
Whereas we look at the directionality at the different states (normal vs downward and upward 
market) by incorporating quantile causality approach. We utilize the test proposed by [28] to 
evaluate the flow of Granger cause across various quantiles of distribution.  
Our empirical analysis based on the time-varying dynamic conditional correlation (DCC)-
Student-t copula reveals asymmetric connectedness dynamics that vary over time. Although the 
mean dependence between assets is characterized by moderate linkage, the time-varying 
connectedness indicates significant fluctuation. Furthermore, based on the analysis from cross-
quantile correlation (CQC) for four different lags, we find that non-ferrous metals positively 
affect clean energy stocks when both are in extreme lower tails (turmoil period) of the return 
distribution. On the contrary, the CQC from the clean energy assets to non-ferrous metals 
indicates a relatively weaker positive influence from these assets to non-ferrous metals. In 
addition, the time-varying CQC shows asymmetric behavior across lower, median, and upper 
quantiles of distribution. The estimates of Granger-causality in mean and quantiles indicate that 
the changes in clean energy assets (non-ferrous metals) do not Granger-cause variations in non-
ferrous metals (clean energy assets) at the 1% significance level for lag 1. However, for the 
higher lag orders, we report bidirectional causality among assets across nearly all quantiles.  
Our results indicate that non-ferrous metals are essential for the development of clean energy 
assets. These results are crucial as clean assets are vital for minimizing the impact of climate 
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risks. The tail dependence between the variables suggests that positive assurance and stability of 
the non-ferrous metals are crucial to mitigate the uncertainty in clean energy markets. 
This paper is ordered in the following sections. Section 2 provides a review of the literature on 
the linkages between clean energy stocks and strategic commodities. Section 3 focuses on data. 
Section 4 provides the methodology. The empirical findings are discussed in Section 5. 
2. Literature Review 
The clean energy stocks, as an instrument in the equity market, have exhibited systematic co-
movement with other asset classes [29]. Although no theoretical explanations can be provided 
regarding linkages among clean energy index (clean technology stocks) and crude oil [13], the 
empirical researches on clean energy and oil nexus are found in plenty. Studies linking the clean 
energy (clean technology) stocks to crude oil [17,19,30–39] advocate mixed findings on how 
clean energy stocks are related to oil. Majority of these works contend that crude oil price plays a 
dominant role in determining clean energy stock prices barring a few [9,11,17,34]. 
The last decade has also witnessed precious metals as an emerging asset class for investors [40]. 
Studies pertaining to the risk spillover and hedging effectiveness of precious metals with stock 
markets are well documented in the literature [41–47]. In addition to that, numerous studies 
explore the connectedness between precious metals and oil prices [13,34,48–53]. While 
investigating the link between precious metals and clean energy stocks, [9] concludes that gold is 
not the preeminent risk management instrument for these stocks. [54] establishes that the silver 
market uncertainty would create a negative impact on the global solar energy stock indexes. [16] 
establish that gold is a superior asset class for clean energy indices in case of extreme market 
movements. [29] find that gold returns positively affect clean energy stocks during periods of 
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turmoil. In another strand of research, [15] investigate the safe-haven properties of Bitcoin for 
stock markets during extreme market situations and if bitcoin reveals similar safe-haven 
characteristics as gold or general commodity index. The study defines a novel approach of 
identifying weak and strong safe-haven properties4 of assets using a bivariate cross-quantilogram 
approach for developed and emerging economies. Their findings support time-varying but weak 
safe-haven roles of Bitcoin, gold, and other commodities.  
[55] investigate the volatility spillover among some of the key non-ferrous metals and report 
strong evidence of spillover among the assets over the post-crisis period. The key rationale 
offered for strong spillovers is related to the increased utilization of these metals in industrial 
production. For instance, the automobile industry is highly reliant on nickel and aluminum and 
the increased utilization of lead and copper in the electrical sector and electronics. [56] find 
persistency and asymmetric effect in volatilities of the non-ferrous metals‘ spot and futures price 
series using TGARCH and EGARCH frameworks. [57,58] utilize the HAR and LHAR model to 
forecast the volatility of the futures prices of Chinese non-ferrous metals, respectively. [59] 
report the time-varying effects of non-ferrous metals on the industrial economy of China.  
Surprisingly, in this plethora of empirical research, studies on the nexus between clean energy 
stocks and/or technology and non-ferrous metals are nonexistent despite its widespread 
application in the industry and importance in the commodity markets [60–62]. 
 
3. Methodology 
                                                           4 A strong safe-haven property of an asset exists when there is evidence of causality from a stock to that asset in the low quantiles of both the stock and the asset returns, and the sign of causality is negative. In contrast, the asset has a weak safe-haven characteristic when there exists no evidence of causality from a stock index to that asset in the low quantiles of both the stock and the asset returns (refer to[15]). 



10 
 

3.1. Time-varying copula 
The copula frameworks are flexible and effective in characterizing and modelling connectedness. 
We utilize a DCC-Student-t copula to assess the extreme nonlinear tail dependence, which 
generally characterize the financial and commodity returns. According to [63] theorem, the joint 
distribution function for a copula may be defined: 
    (   )   (   ) 1 

where     ( ) and     ( ) represent the univariate functions for   and   and    (   ) 
corresponds to the joint distribution function. We may define the Student-t copula as: 
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where        ,  ̅ is the sample covariance of   ,  ̃  represents the square root of 
diagonal components of   . Estimation of the marginal distribution model is an essential 
precursor to estimate copula. Based on AIC, we determine an ARMA(1,0)-EGARCH(1,1) to best 
capture the dynamics in the evaluated series.5 We may specify the generalize form EGARCH(P, 
Q) as: 

log  
     ∑  log    

 

 

   

  ∑  

 

   

*
|    |

    
  ,

|    |

    
-+   ∑  (

    

    
)

 

   

  3 

where    and    corresponds to the ARCH and GARCH parameters, correspondingly, and    
reflects the asymmetric effect in the underlying series. 
3.2. Cross-quantilogram 
To evaluate the variations in dependence across different quantiles of the return distributions, we 
utilize a cross-quantilogram correlation (CQC) approach of [65]. The CQC approach is superior 
to copulas as it provides a detailed overview to examine whether extreme returns among the 
assets are symmetrically connected. The CQC approach is model-free, and the primary condition 
for its application necessitates that the underlying series should be a stochastic stationary 
process.  
We provide the outputs of CQC in terms of the heatmap for various lags. Heatmaps enable us to 
provide an estimate of entire connectedness dynamics across various quantiles ,  

(                   )- of the return distribution. The statistically significant cross-quantile 
dependence parameter is presented by the color scale, and the insignificant parameter is set as 
zero. 
                                                           
5 The best GARCH model is chosen from various marginal distributional models (GARCH, EGARCH, GJR-GARCH). However, for brevity, we only report the estimates from the best-suited model.  



12 
 

Let    and    represents the two-underlying series. Based on the following assumption that 
   (       )

          and    (       )
    ,6 we can define the conditional 

distribution and a quantile function as  (  |  )
( |   ) and     (  )   inf *   (  |  )

( |   )     + 
for any    (   ). We can then define the cross-quantilogram as the cross-connectedness of 
various quantiles that is expressed as: 

  ( )   
 0   

.         (  )/   
.             (  )/1

√ 0   
 .         (  )/1√ 0   

 .             (  )/1

 4 

where   represents the lead-lag to time  . We follow [65] and evaluate the null-hypothesis of no 
conditional dependence (      ( )      ( )   ) against an alternative representing 
different from zero (      ( )        *     +) by employing a Box-Ljung test for 
statistical inference, which can be expressed as: 
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3.3. Mean and quantile Granger-causality 
We deploy the quantile Granger-causality test by [28] to examine the causality among 
underlying assets. Given two underlying series    and   , [66] shows that    do not cause    if 
the historic    values do not forecast future    values. Assuming an explanatory vector    
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where   ( |  
    

 ) is the function for the conditional distribution of    given (       ). Let 
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 ), we can specify the above function for quantiles 
as follows: 
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relies only on the restricted information set    . The null hypothesis of non-causality may be 
restated as: 

  
     { [    (  

    ( ))]|  
    

 }     a.s.         6 
where  (  

    ( )) refers to conditional quantile   
 ( |  

 ), for all    . Let   be a matrix of 
    with components          

(    .  
    (  )/), where    

( )   (   )    . 
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 -the respective column of  . We utilize the    test by specifying three alternative quantile 
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autoregressive (QAR) frameworks  ( ), for all     ,   -, under the null of no-causality as 
follows: 

 A  1 :   (  
   ( ))    ( )     ( )         

  ( ) 

 A  2 :   (  
   ( ))    ( )     ( )       ( )         

  ( ) 

 A  3 :   (  
   ( ))    ( )     ( )       ( )        ( )         

  ( ) 

 8 

where we estimate parameter  ( )  (  ( )   ( )   ( )   ( )   )
  by maximum likelihood using an equally spaced quantile grid.  

4. Data and descriptive statistics 
We utilize the daily data spanning from November 2003 to May 2019. The sample span is 
selected based on the availability of the data. For example, the S&P global clean energy index 
(CEI) data is only available from November 2003. The CEI is a global weighted index based on 
the market capitalization of 30 large firms affiliated with CE-related business, for instance, CE 
production and CE equipment and technologies. In addition to CEI, we consider non-ferrous 
metals (NFM), Wilderhill clean energy (WHCE), and NYSE ARCA Technology index (NAT). 
The NFM index comprises of several industrial metals, for instance, aluminum, copper, lead, 
nickel, tin, and zinc, among others.7 These metals represent a significant proportion of the Dow 
Jones non-ferrous metals index and LME non-ferrous metal index, which are widely accepted 
instruments to evaluate the investment performance of industrial metals, and as economic 
indicators [24,67]. NFM, which mainly represents global commodity markets, is largely 
employed in the CE production over recent years. WHCE tracks the clean energy sector, 
especially the businesses that signify technological innovation, CE, and importance to prevent 
                                                           
7
 For a robustness check, we have examined the disagreggate level analysis for some of the key metals in the non-

ferrous metals index. The obtained outputs for individual metals are qualitatively similar to the estimates obtained 
between non-ferrous metals and clean energy indexes. However, the intensity of individual metals are relatively 
weaker than the aggregate non-ferrous metals index. For the sake of brevity, we chose not to report these 
estimates. However, these estimates are available from the corresponding author upon request. 
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global warming. NAT provides a benchmark to measure the relevance of technology-related 
firms over a comprehensive spectrum of businesses. We collected the data from Thomson 
Reuters DataStream. The logarithmic returns for each series at time   and     as      

  (    )    (      ). 
Figure 1 presents the progress of the price and returns series in our sample. Interestingly, all the 
assets exhibit an increasingly upward trend from 2004 to 2008 period and exhibit a swift decline 
over the global financial crisis of 2007-08 (GFC). Some key observations can be made for the 
post-GFC period. First, the NFM price increases significantly to the pre-GFC price level with 
simultaneous periods of rising and falling trends and eventually returning to the 2004 price levels 
towards the end of the sample. Second, WHCE and CEI further declined and remained 
persistently low till the end of our sample. Interestingly, NAT increased steadily over the post-
GFC period and peaked towards the end of the sample.  
Table 1. Preliminary statistics and stochastic properties. 
  NFM WHCE CEI NAT 
Mean(%) -1.504 -5.680 -2.940 10.237 
SD 0.502 0.313 0.286 0.191 
SR -0.110 -0.470 -0.303 1.064 
Max 0.252 0.145 0.181 0.101 
Min -0.227 -0.145 -0.150 -0.081 
Skew -0.162 -0.359 -0.539 -0.245 
Kurt 9.050 8.325 17.052 8.302 
J—B 5970.2*** 4696.7*** 32308.5*** 4612.3*** 
Q(15) 20.1 27.2** 113.0*** 38.7*** 
Q2(15) 2427.3*** 5857.6*** 6695.9*** 3999.3*** 
ARCH(15) 716.2*** 1230.4*** 1355.6*** 1089.2*** 
ADF -61.251*** -59.474*** -53.679*** -65.778*** 
PP -61.237*** -59.450*** -53.363*** -66.125*** 
Pearson 1.000 0.619 0.573 0.576 
Kendall 1.000 0.409 0.372 0.368 
Spearman 1.000 0.571 0.523 0.518 Notes. We report annualized values of mean and standard deviation(SD). SR corresponds to the reward-to-risk measure [68], and J—B shows the test-statistics from the Jarque-Bera normality test. Q(15) and Q2(15) represent the test-statistics from the Ljung-Box test for serial correlation in returns and squared returns with 15 lags. ARCH(15) corresponds to the statistics from [69] test for homoscedasticity with 15 lags. The notations ***, **, and * show that the null hypothesis of normality, no autocorrelation, and homoscedasticity is rejected at 1%, 5%, and 10% threshold level, respectively. 
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Table 1 provides preliminary statistics. The average annualized return is negative for NFM (-
1.50%), WHCE (-5.68%), and CEI (-2.94%), while it is positive for NAT (10.24%). The 
annualized SD ranges from 0.19 for NAT to 0.50 for NFM. Regarding reward-risk measure, 
NAT generates the highest return compared to the uncertainty of 1.06, while CEI gives the least 
reward of -0.47. All the series exhibit negative skewness, and the value of kurtosis is higher than 
4, suggesting deviation from normality. The null-hypothesis of normality, independence, and 
homoscedasticity is rejected at a 1% significance level by the Jarque-Bera, Ljung-Box, and 
ARCH-LM test, respectively. This illustrates the importance and relevance of utilizing the 
quantile analysis that provides robust estimates to non-normal skewness.  

A. NFM B. WHCE 

  
C. CEI D. NAT 

  
Figure 1. Development of price and return series.  
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Since the primary requirement for utilizing the CQC framework necessitates that the time series 
should be stationary, we test the stationarity by employing the augmented Dickey-Fuller [70] and 
Phillips-Perron (PP)[71] tests. The estimates from these tests indicate that the logarithmic 
difference is stationary.  
5. Empirical analysis 
5.1. Estimations of copula functions 
To estimate the DCC-Student-t copula function, we follow a two-step method. The first step of 
this procedure comprises of estimation of the marginal model for returns. Table 2 shows the 
coefficients of the ARMA(1,0)-EGARCH(1,1). The lagged autoregressive coefficient is 
significant for all the clean energy assets, indicating previous returns are instantly manifested in 
current returns. The ARCH ( ), GARCH ( ), and leverage effect ( ) components are highly 
significant, indicating that lagged squared shocks, persistency, and asymmetric shocks in 
conditional volatilities, respectively. The tail dependence, DoF, is highly significant, suggesting 
strong potential for connectedness in upper and lower quantiles. The results from diagnostic tests 
on residuals reveal no serial correlation or ARCH effects, suggesting the adequacy of the applied 
framework.  
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Table 2. Marginal distribution model 
  NFM WHCE CEI NAT Panel A: Mean 
  0.000 0.000* 0.000** 0.000* 

 (0.000) (0.000) (0.000) (0.000) 
AR(1) 0.012 0.069*** 0.145*** -0.035** 

 (0.016) (0.016) (0.016) (0.017) 
Panel B: Variance 
  -0.043*** -0.154*** -0.096*** -0.218*** 

 (0.013) (0.030) (0.022) (0.032) 
  0.994*** 0.981*** 0.989*** 0.977*** 

 (0.002) (0.004) (0.002) (0.004) 
  0.093*** 0.158*** 0.153*** 0.120*** 

 (0.012) (0.016) (0.016) (0.016) 
  -0.052*** -0.049*** -0.047*** -0.131*** 

 (0.007) (0.009) (0.009) (0.012) 
DoF 6.846*** 12.406*** 8.792*** 8.216*** 

 (0.584) (2.245) (1.240) (1.048) 
     Log(L) 8724.1 10486.3 11374.4 12401.9 

AIC -17434.1 -20958.6 -22734.9 -24789.8 
Skewness -0.267 -0.284 -0.169 -0.525 
Kurtosis 7.009 3.670 3.981 4.239 
J—B  2660.3 125.3 175.2 429.3 
Q(15) 18.795 15.983 8.448 13.974 
Q2(15) 9.555 23.648* 21.897 14.433 
ARCH(15) 9.430 21.696 21.012 13.432 Notes. This table presents the outcomes of the ARMA(1,0)-EGARCH(1,1) specification. Standard errors are presented in parenthesis. The significance level is indicated by ***, **, and * for 1%, 5%, and 10% level, respectively. The signs***, **, and * on diagnostics reflect the null-hypothesis rejection of normality, no serial correlation, and conditional homoscedasticity at the 1%, 5%, and 10% significance level respectively.  
Based on marginal distribution estimates, we examine the connectedness dynamics among assets 
by utilizing copula. Table 3 presents the estimated parameters of the DCC-Student-t copula 
framework. The connectedness is moderate and highly significant among the assets. The 
dependence between NFM and assets stands at 0.486 (CEI), 0.502 (NAT), and 0.546 (WHCE). 
The DoF parameter is strongly significant, reflecting extreme comovements. The parameter   
and   capturing the asymmetric effect and time-varying connectedness structure of conditional 
connectedness between assets are strongly significant. 
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Figure 2 presents the time-varying development of the connectedness parameter. It is worthwhile 
noting that extreme market conditions significantly impact the connectedness structure between 
assets peaking during the GFC and later during the European debt crisis of 2011-2012. This is in 
accordance with several studies in the field, examining the connectedness structure among 
commodities and clean energy assets [for example, 9,11,16,18,36,39,72]. However, the copulas 
consider the dependence structure between the assets as time-static, as it cannot include lags and 
measure only a general connectedness between the assets. Therefore, we utilize the CQC and 
quantile-based Granger-causality approaches, which provide an estimation of variations in 
dependence and causality across different quantiles and enable us to incorporate lag orders. 
 
 
 
Table 3. Copula parameters 

  WHCE CEI NAT 
ρ 0.546*** 0.486*** 0.502*** 

 
(0.002) (0.003) (0.002) 

DoF 10.356*** 10.300*** 11.661*** 

 
(1.722) (1.938) (2.223) 

α 0.036*** 0.028*** 0.050*** 

 
(0.006) (0.004) (0.008) 

β 0.955*** 0.965*** 0.930*** 

 
(0.009) (0.006) (0.013) 

Log(L) 864.369 684.235 699.470 
AIC -1722.739 -1362.470 -1392.940 
Notes. This table presents the parameters of time-varying DCC-Student-t copula parameters. Standard errors are presented in parenthesis. The significance level is indicated by ***, **, and * for 1%, 5%, and 10% level, respectively.  

 
A. WHCE B. CEI 
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Figure 2. Development of connectedness parameter.  

  C. NAT 
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5.2. Cross-quantile correlation 
In Figure 3 and Figure 4, we show the cross-quantile correlation (CQC) to/from clean energy 
from/to NFM for four different lags. To provide the statistical significance of predictability, we 
utilize the Box-Ljung test, and all the insignificant estimates are replaced as zeros. In each of the 
heatmap in Figure 3, the horizontal and vertical axis corresponds to the quantiles of NFM and 
clean assets, respectively. Similarly, for each heatmap in Figure 4, the horizontal and vertical 
axis corresponds to the quantiles of clean energy assets and NFM, respectively. The magnitude 
(positive/negative dependence) is displayed through the color scale from red (highly positive) 
through green (uncorrelated) to blue (highly negative). 
In the case NFM and WHCE at lag 1 in Figure 3, we observe positive influence of NFM on 
WHCE when both series are in the lower quantiles. Specifically, we observe strong positive 
influence on WHCE from NFM when the NFM is in lower quantiles and WHCE is in the lower 
to middle quantile. This outcome indicates that when the return series of NFM exhibit downward 
movement (extreme market conditions), NFM positively influences the WHCE. In general, NFM 
represents the health of the global commodity market. A positive development in the NFM index 
suggests an expansion of the global economy, and good global economic health triggers 
investment in the clean energy sector. So, the positive link between NFM and WHCE during a 
bearish market condition indicates that both the stocks become less attractive to the investors. 
Also, during the downturn of the commodity market, CE firms reap the benefit most. 
Furthermore, NFM has a negative influence on WHCE when NFM is in the upper quantile, and 
WHCE is in the lower quantile. This result is expected as due to the intensive utilization of 
NFMs in CE production and CE technologies and equipment, an upward price shock in NFMs 
should negatively impact the clean energy indices. These effects between the two series 
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deteriorate but persist over the one week (lag 5), month (lag 22), and a quarter (lag 66). So, in the 
long-term, an upward price shock may have detrimental effects on clean energy firms. However, 
we do not detect significant spillover in median or upper quantiles among NFM and WHCE. 
This signifies the importance and relevance of utilizing the cross-quantilogram approach in 
evaluating the dependence among the NFM and the clean energy assets as the utilization of 
mean-based approaches only consider information in the means of the distribution. In this regard, 
these approaches ignores significant information linkage in the tails of the distribution or during 
extreme market conditions.  
In the case of NFM and CEI, we observe strong positive dependence exhibiting from NFM on 
CEI. The directional predictability from NFM to CEI indicate that the NFM is influencing CEI 
throughout the entire distribution. Our findings indicate that the NFM impact on CEI is stronger 
at the same quantile level (for instance,                            ) but the 
interconnectedness is insignificant in opposite quantiles (for instance,                    ). 
Furthermore, with the increase in lag length, although there is no median-to-median dependence, 
we report strong tail dependence between assets during the extreme market condition. The 
positive dependence between NFM and CEI could be due to smaller selection of focused energy 
stocks in the domain of clean energy production, equipment, and technology firms as opposed to 
WHCE comprising of 37 stocks in the areas of energy conversion (21% sectoral weight), power 
delivery and conservation (21% sectoral weight), greener utilities (11% sectoral weight), energy 
storage (21% sectoral weight) and cleaner fuels (5% sector weight). 
For the CQC between NFM and NAT, we report strong tail dependence at lag 1. This indicates 
that the NFM positively influence the NAT when NFM is in the lower quantile of the 
distribution. However, the magnitude deteriorates over the one week (lag 5) and month (lag 22). 
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Furthermore, we observe relatively weak dependence over the quarter (lag 66). In addition, we 
find that the dependence between NFM and NAT is moderately negative when NFM is in the 
upper quantile of the return distribution. This outcome strengthens over the one-week period (lag 
5). Nevertheless, over the increased lags (lag 22 and 66), this relationship weakens, suggesting a 
weakening of connectedness structure with time. This indicates that the upward price shocks in 
NFM have an adverse impact on the technology stocks due to the increase in input costs. These 
findings also suggest that we may expect a negative dependence structure and attain 
diversification benefits when the NFMs prices tend to exhibit an upward trend. These findings 
are in line with the [16] as they report gold and crude oil as weak safe-havens for clean energy 
stocks.  
Figure 4 presents the mutual directionality from clean energy assets to NFM. Similar to the 
findings reported for CQC from NFM to clean energy assets, the estimates from Figure 4 
indicate strong evidence of tail dependence and extreme co-movements characterize the series. 
However, the intensity of predictability is relatively weaker from clean energy asset to the NFM. 
This further suffice the flow of directionality from NFM to the clean energy assets. It is 
worthwhile noting that all the clean assets show negative dependence with NFM when the clean 
assets are in the lower tail, and NFM is in the upper tail (for example,                    ). 
Furthermore, this effect tends to persist over one week (lag 5) and month (lag 22) but dissipate 
over the longer lag length (lag 66). This is in accordance with the findings of [38] as they report 
the asymmetric impact of positive and negative shocks on the clean energy assets. The finding 
suggests a possibility of a strong safe-haven [15] role of NFM for clean assets as there is 
evidence of predictability from clean energy stocks to NFM in the lower quantiles and the sign of 
predictability is negative. 
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NFM WHCE CEI NAT Lags = 1(D) 

   
5(W) 

   
22(M) 

   66(Q) 

   

 Figure 3. Cross-quantilogram plot from NFM to clean energy assets. Notes. The CQC is evaluated by utilizing Eq. (4) and the statistical significance is calculated by utilizing Ljung-Box test as specified in Eq.(5). We set the insignificant correlation to zero and report only the significant correlation. The lags correspond to daily, weekly, monthly, and quarterly lags, respectively. The scale represents the intensity and direction of relationship. 
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Lags = 1(D) 
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22(M) 

   

66(Q) 

   

 Figure 4. Cross-quantilogram plots from the clean energy assets to NFM. Also, see notes Figure 3. 
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NFM [0.05-0.05] [0.50-0.50] [0.95-0.95] 

WHCE 

   

CEI 

   

NAT 

   Figure 5. Cross-quantilogram correlation among NFM and CE stocks by utilizing the recursive subsampling technique. Notes. We set 252-days as the length of the first window that moves forward on a daily basis. The columns from left-to-right present recursive CQC estimates when both return distributions are at the 5% (lower quantile), 50% (median quantile), and 95% (upper quantile) threshold levels, respectively. The blue lines represent the time-varying CQCs in the recursive subsamples, while the red lines represent no-predictability of the null hypothesis at 95% confidence interval, which is derived from a bootstrap procedure of 1000 iterations at each point of the recursive subsample.  
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The CQC heatmaps provide an overview of quantile connectedness between the underlying 
assets in a time-invariant scenario. Therefore, we utilize the recursive approximations to evaluate 
any potential time-varying connectedness shifts across different cross-quantiles. In this study, we 
use 252-days length of the first window for the recursive subsample estimation process. 
Specifically, we evaluate the cross-quantile dependence for the first window period, then re-
estimate the CQC by adding one day to the window-length and continued this procedure until the 
end of the sample. Figure 5 shows the estimates when both series are at 5% (lower quantile), 
50% (median quantile), and 95% (upper quantile). The blue lines represent the time-varying 
cross-quantile correlations from recursive estimations, while the red lines represent the 95% 
interval for rejection of the null hypothesis, which is approximated from a 1000-bootstrap 
iteration technique at each point of the recursive subsample. 
From the lower quantile (0.05-0.05) of recursive CQC plots, we can observe a sharp increase in 
the CQC during the GFC. The abrupt shift in dependence is indicative of a potential structural 
break in the connectedness structure. With the outbreak of GFC, we find an increase in the 
connectedness, which exhibits a declining spree over the post-GFC period. Regarding the NFM 
dependence with NAT, we find that the correlation is slightly negative but has an inclining spree 
until the advent of GFC. The level of connectedness increases during GFC and becomes 
relatively stable over time. Overall, these results indicate that financial turmoil contributes 
positively to the dependence over the lower quantiles. This increase may be attributed to the 
increased interdependence among the financial and commodity markets due to higher uncertainty 
perceived by the investors in the financial products alone over periods of crisis. The finding of 
increasing connectedness among NFM and other asset classes post-crisis is in line with the study 
by [73] demonstrating a higher degree of integration between commodity and financial market 



30 
 

after the GFC. Furthermore, the dependence among the NFM and clean energy indices did not 
decline significantly over the post-GFC period, which may be attributed to the increased 
investment in the clean energy sector [29]. 
In terms of median quantile (0.50-0.50) dependence of recursive subsamples, we find a lack of 
median-to-median interdependence indicative from the blue line is almost flat around zero for 
NAT. The recursive subsampling CQC plot of CEI indicates that the blue line flattened around 
0.1, indicating a lower degree of interdependence, whereas the CQC is downward trended 
between NFM and WHCE, indicating that the dependence among these assets approximates to 
neutrality. These findings are in accordance with the time-static CQC reported in Figure 3 and 
Figure 4, which indicate no interdependence among the assets in the median quantiles, except for 
CEI.  
For the upper quantile (0.95-0.95), we observe a structural break with the advent of GFC for the 
three clean energy assets. The CQC of NAT primarily fluctuates around zero, indicating 
neutrality hypothesis and a lack of upper quantile dependence, whereas the CQC of CEI 
significantly increases during the GFC and overtime decline to 0.1 over the post-GFC period. On 
the other hand, the recursive CQC of WHCE partially increased until the outbreak of GFC with a 
persistent decline in dependence over the post-crisis period. These findings are in accordance 
with the findings reported in [16,18] indicating asymmetric information connectedness of 
positive and negative shocks among NFM and clean energy assets.  
5.3. Causality in quantiles 
The copula and CQC approach provide an overview of static and time-varying connectedness 
structure. However, they do not provide an indication of a causal relationship. Therefore, 
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following [28], we utilize the quantile Granger-causality test to evaluate cause and effect 
relationships across various quantiles. By using this method, we can differentiate between 
causality impacting the tails and median of the distribution.  
Table 4 and Table 5 provide the  -values from the quantile causality test in Eq.(7) to/from NF 
metals from/to clean energy assets by estimating three different specifications of QAR in Eq.(8) 
with the null of neutral quantile causality in Eq.(6). The    test is implemented over 19 equally 
spaced quantile grids   ,         -. Following [28,74], we utilize a size of   [     ] for 
subsample, where     is a constant parameter,       , and , - is the integer part of a 
number, which equals to 137. 
Table 4. Quantile Granger-causality to NF metals 
    HCE  to   F      CEI  to   F   

 
  A   to   F   

  
      1 2 3   1 2 3 

 
1 2 3 

[0.05;0.95] 0.093 0.000 0.000 
 

0.892 0.000 0.000 
 

0.922 0.000 0.000 
0.05 0.526 0.022 0.022 

 
0.574 0.022 0.022 

 
0.579 0.022 0.022 

0.10 0.564 0.000 0.000 
 

0.769 0.000 0.000 
 

0.768 0.000 0.000 
0.15 0.642 0.000 0.000 

 
0.874 0.000 0.000 

 
0.875 0.000 0.000 

0.20 0.485 0.000 0.000 
 

0.911 0.000 0.000 
 

0.916 0.000 0.000 
0.25 0.250 0.000 0.000 

 
0.901 0.000 0.000 

 
0.918 0.000 0.000 

0.30 0.108 0.000 0.000 
 

0.911 0.000 0.000 
 

0.920 0.000 0.000 
0.35 0.126 0.000 0.000 

 
0.789 0.000 0.000 

 
0.852 0.000 0.000 

0.40 0.109 0.000 0.000 
 

0.617 0.000 0.000 
 

0.674 0.000 0.000 
0.45 0.407 0.000 0.000 

 
0.489 0.000 0.000 

 
0.513 0.000 0.000 

0.50 0.357 0.003 0.011 
 

0.343 0.003 0.011 
 

0.359 0.003 0.011 
0.55 0.239 0.004 0.003 

 
0.461 0.004 0.003 

 
0.538 0.004 0.003 

0.60 0.131 0.000 0.000 
 

0.638 0.000 0.000 
 

0.852 0.000 0.000 
0.65 0.084 0.000 0.000 

 
0.698 0.000 0.000 

 
0.943 0.000 0.000 

0.70 0.078 0.000 0.000 
 

0.808 0.000 0.000 
 

0.894 0.000 0.000 
0.75 0.084 0.000 0.000 

 
0.857 0.000 0.000 

 
0.907 0.000 0.000 

0.80 0.147 0.000 0.000 
 

0.883 0.000 0.000 
 

0.904 0.000 0.000 
0.85 0.450 0.000 0.000 

 
0.889 0.000 0.000 

 
0.907 0.000 0.000 

0.90 0.454 0.000 0.000 
 

0.771 0.000 0.000 
 

0.758 0.000 0.000 
0.95 0.323 0.000 0.000   0.320 0.000 0.000   0.320 0.000 0.000 
Notes. The table reports the obtained  -values from the quantile causality test in Eq.(7).   HCE ,   F  ,  CEI , and   A   
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are the logarithmic returns of WHCE, NFM, CEI, and NAT, respectively.         represents the lags of the explained variable, 
  F  , with the null of no causality in Eq.(6).  
The  -values of the quantile causality test from clean energy assets to NFM are reported in Table 
4. Considering all quantiles for          , we find no Granger-causality from the clean energy 
assets to NFM at a 1% significance level. However, with the increase in the number of lags, 
  
        and          , we find Granger-causality running from the clean energy assets to 

NFM at the 1% significance level. Two key observations can be made regarding these findings. 
First, the presence of dependence does not essentially indicate causality. Second, the causal 
relationship is sensitive to the selection of the lag length.  
The  -values of the quantile causality test from NFM to clean energy assets are reported in Table 
5. For the     HCE   , we find evidence that variations in NFM Granger-cause the changes in 
WHCE at the 1% threshold level when undertaking all quantiles ,         - of the distribution. 
Furthermore, we find significant  -values around the median-level,   *              + and 
  *              +, indicating that there is Granger-causality from   F   to   HCE . 
However, the  -values of the test at lag 1 is insignificant for  CEI and   A , indicating no 
Granger-causality from NFM to these assets. In terms of higher lag orders, we observe the flow 
of causality from   F  to the clean energy assets for nearly all the quantiles at the 1% 
threshold level. An increase in NFM, in general, represents a boom in the commodity market 
triggered by the expansion in the global economy. Investors who are looking forward to long-
term sustainable growth with environmental responsibility would prefer to invest in clean energy 
stocks instead of sectors that have higher carbon footprints. The investment in fossil fuel 
companies is risky as global action on emissions is becoming tougher. With the global 
investment focus changing from fossil fuel to clean and renewables, an upsurge in clean energy 
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stock price necessitates the demand for metals and minerals used for clean energy production, 
which causes a growth in NFM. These findings are in-line with [13,18] as they report 
bidirectional and symmetric effect of clean energy assets with commodities.  
Table 5.Granger-causality to clean energy assets 

    F   to   HCE      F   to  CEI      F   to   A   

 
  
     =1   

     =2   
     =3     

    =1   
    =2   

    =3 
 

  
    =1   

    =2   
    =3 

[0.05; 0.95] 0.003 0.000 0.000 
 

1.000 0.000 0.000 
 

0.984 0.000 0.000 
0.05 0.728 0.254 0.254 

 
0.959 0.000 0.000 

 
0.741 0.475 0.378 

0.10 0.831 0.000 0.000 
 

1.000 0.000 0.000 
 

0.944 0.000 0.000 
0.15 0.670 0.000 0.000 

 
1.000 0.000 0.000 

 
0.949 0.000 0.000 

0.20 0.298 0.000 0.000 
 

1.000 0.000 0.000 
 

0.937 0.000 0.000 
0.25 0.048 0.000 0.000 

 
1.000 0.000 0.000 

 
0.943 0.000 0.000 

0.30 0.001 0.000 0.000 
 

1.000 0.000 0.000 
 

0.951 0.000 0.000 
0.35 0.000 0.000 0.000 

 
1.000 0.000 0.000 

 
0.885 0.000 0.000 

0.40 0.002 0.000 0.000 
 

0.710 0.000 0.000 
 

0.731 0.000 0.000 
0.45 0.077 0.000 0.000 

 
0.272 0.000 0.000 

 
0.581 0.000 0.000 

0.50 0.357 0.000 0.000 
 

0.577 0.000 0.000 
 

0.508 0.000 0.000 
0.55 0.100 0.261 0.318 

 
0.247 0.044 0.029 

 
0.534 0.212 0.288 

0.60 0.005 0.001 0.001 
 

0.732 0.000 0.000 
 

0.746 0.007 0.001 
0.65 0.001 0.000 0.000 

 
1.000 0.000 0.000 

 
0.935 0.000 0.000 

0.70 0.000 0.000 0.000 
 

1.000 0.000 0.000 
 

0.980 0.000 0.000 
0.75 0.041 0.000 0.000 

 
1.000 0.000 0.000 

 
0.986 0.000 0.000 

0.80 0.314 0.000 0.000 
 

1.000 0.000 0.000 
 

0.978 0.000 0.000 
0.85 0.548 0.000 0.000 

 
1.000 0.000 0.000 

 
0.961 0.000 0.000 

0.90 0.597 0.000 0.000 
 

0.967 0.000 0.000 
 

0.881 0.000 0.000 
0.95 0.285 0.000 0.000   0.822 0.000 0.000   0.501 0.000 0.000 
Notes. The table reports the obtained  -values from the quantile causality test in Eq.(7). Also, see notes Table 4. 

Conclusion and policy implication 
Increased climate risk and energy security issues have emerged as the primary driving forces in 
transforming the landscape of the global energy sector towards clean energy or renewables 
sources. The transition towards clean energy depends on some technologies whose success relies 
on the availability of some strategic non-ferrous metals. In this paper, we evaluate cross-quantile 
dependence and causality between non-ferrous metals and clean energy assets. We assess the 
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time-varying asymmetric dependence among the assets using copulas. Based on the copula 
estimates, we employ the cross-quantilogram analysis to evaluate the time-invariant and time-
varying asymmetric dependence across various quantiles. Finally, we utilize the Granger-
causality in quantiles to examine the flow of causal relationships.  
Our findings indicate that the dependence among non-ferrous metals and clean energy assets is 
time-varying and asymmetric with potential for extreme co-movements, indicating that the 
conditional dependence among the assets strengthens during the turmoil period but weakens over 
the periods of economic prosperity. The analysis from the CQC analysis indeed affirms this 
hypothesis. Furthermore, we find that the extreme market conditions tend to strengthen the 
spillover among the assets as reported by strong dependence in the lower quantiles of the return 
distributions; the connectedness structure deteriorates but persists in longer lags. In contrast, our 
findings indicate insignificant or weak dependence in the top quantile of the return distributions, 
indicating deterioration of connectedness structure during phases of financial and economic 
prosperity. Moreover, the recursive CQC affirms this asymmetric connectedness among the non-
ferrous metals and clean energy assets as the lower quantiles exhibit a strong dependence as 
opposed to the connectedness in the median and top quantiles, indicating a strong safe-haven role 
of non-ferrous metals. Furthermore, the dependence among the assets significantly increased 
during the GFC, suggesting strong co-movement during periods of turmoil. The analysis from 
the Granger-causality in quantiles indicates the insignificant causal relationship among non-
ferrous metals and clean energy assets, except for Wilderhill clean energy. However, we find 
evidence of bidirectional causality in higher lag orders among the assets over nearly all quantiles 
of the return distributions.  
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Our empirical findings are insightful and have pertinent implications for policymakers and 
market participants. The following phenomena can explain the bidirectional linkage between 
NFM and clean energy stock indices. The focus of global investors has now shifted towards non-
fossil fuel because the investment in fossil fuel companies is becoming risky as global action on 
emissions gets tougher, which may create stranded assets in the coal, oil, and gas sector. Our 
findings have significant implications for market participants given that the growing concerns 
about energy security and climate change encourage financial institutions to invest in clean 
energy industries. Hence, the results are of paramount importance to investors who intend to 
decarbonize their portfolio and swap dirty assets (e.g., oil) for clean energy equities. It is also 
worth mentioning that proper knowledge on how investors participating in alternative energy 
markets can hedge their investment is essential for risk management. To this end, our analysis 
indicate that the linkage between stock and commodity prices would be useful for portfolio 
managers seeking to attain diversification benefits and investment protection against downside 
risk. As renewable energy stocks have emerged as a new asset class, these stocks can be highly 
volatile [16]. Thus, exact information on how the risk is linked to clean energy assets could play 
a pivotal role in outlining sustainable business strategies and designing optimal portfolios. This 
may further perturb the access to capital, impacting the share price of fossil fuel producers 
adversely. Given that investments in renewable energy have positive environmental and socio-
economic impacts that potentially help ensure a certain degree of sustainability, the results of our 
empirical study have important implications for institutional investors who make attempts to 
precisely detect the clean energy market risk through proper financial modeling. Many 
institutional investors like sovereign wealth funds, pension funds, faith-based organizations, 
philanthropic foundations, and educational institutions have commitments to divest from 
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traditional fuel to clean energy sources. The magnitude of divestment has witnessed an 
exponential growth of 11,900 percent in the last four years. This increasing thrust of investment 
from fossil fuel to the clean energy sector explodes the demand for NFM encompassing certain 
strategic minerals and metals, which are highly critical for clean energy production. This means 
that NFM is certainly going to emerge as an attractive investment option in the investors‘ 
fraternity. However, there is a downside to an increase in demand for certain critical metals that 
are required for a clean energy transition. The majority of these metals are available in certain 
geographical locations in the world, which are highly politically sensitive. So, a physical 
withholding or a possible cartelization of these critical metals may increase the price of these 
strategic metals, which may dampen the prospect of clean energy projects entirely. Therefore, the 
investors should make a careful decision while selecting non-ferrous metals as the best safe 
haven creating their long-term investment portfolio. Apart from the investors, the outcomes of 
this study are of great interest to policymakers as it would help them to identify the window of 
opportunity for policy interventions and boost public investment to enhance the economic 
viability of clean energy projects. Additionally, the findings have implications to researchers and 
academics as well. For instance, researchers are always in search of precise asset pricing models 
and finding such processes often requires better understanding of how financial markets are 
interconnected. Therefore, the results could enable them to precisely model the time-varying 
volatility of clean energy stocks. Moreover, the presence of asymmetric linkage between 
nonferrous metals and stock markets would shift the academics from linear modeling to the 
adoption of non-linear approaches. Hence, this empirical work could be useful for researchers in 
estimating market risk associated with green assets. 
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