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ABSTRACT 

 

The strong negative correlation between contemporaneous changes of VIX and stock 

returns is well-documented by multiple studies such as Fleming, Ostdiek and Whaley 

(1995), Giot (2005) and Rubbaniy, Asmerom, Abbas and Naqvi (2014). Due to the highly 

negative relationship between VIX and stock returns, timing possibilities with VIX in the 

equity markets are an increasingly examined topic in economic science. Giot and 

Banerjee, Doran and Peterson (2007) find that future stock returns are always positive 

(negative) for very high (low) levels of VIX regardless of the holding period length. This 

thesis contributes to these previous studies by investigating VIX as a potential timing tool 

when investing in equity markets and whether style rotation has an additional effect on 

the returns of a VIX timing strategy. 

 

This thesis examines data from 29th January 1993 to 31st December 2018 and investigates 

how positions selected in S&P 500, Fama-French 5 factors (Fama and French 2015) and 

momentum factor perform on different levels of VIX with different holding periods. The 

key method in this thesis is a 500-day rolling ranking method inspired by Giot (2005) to 

create relative ranks for different levels of VIX. The factor return results are used to 

construct long-short portfolios for each factor to examine if VIX timing strategies with 

style rotation produce excess returns compared to conventional factor portfolios.  

 

The results show that the highest VIX levels are excellent indicators for positive future 

returns in S&P 500. However, the findings of this study do not support the results of Giot 

(2005) and Banerjee, Doran and Peterson (2007) that low levels of VIX always lead to 

negative stock returns. In addition, this thesis reveals that the Fama-French 5 and 

momentum factors exhibit different future returns depending on the level of VIX and that 

the size and operating profitability factors can be used by investors in profitable style 

rotation strategies combined with VIX timing.  

______________________________________________________________________ 

 

KEYWORDS: VIX, market timing, Fama-French 5 factors, negative correlation 
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1. INTRODUCTION  

  

Implied volatility is an increasingly relevant research topic in modern finance due to its 

growing importance for predicting and modelling asset volatility. It is one of the most 

basic volatility concepts used in the academic literature in economics and can be regarded 

as the market uncertainty of the future price of an underlying security, such as an option 

or a stock. The implied volatilities of various Standard and Poor’s 500 index (S&P 500) 

options are used to construct the widely used Volatility Index (VIX) published by the 

Chicago Board Options Exchange (CBOE), which shows the expectations for future 

market volatility. VIX is widely considered to be the best method for measuring expected 

market volatility and is freely available to all investors at the CBOE website. 

 

What makes VIX even more intriguing is its negative correlation with equity market 

returns which is documented by many studies such as Fleming, Ostdiek and Whaley 

(1995), Giot (2005), Hibbert, Daigler and Dupoyet (2008), Whaley (2009), Sarwar (2012) 

and Antonakakis, Chatziantoniou and Filis (2013). However, unlike stock returns to 

compensate for investors’ capital risk, volatility is not expected to grow over time due to 

its mean-reverting nature and Banerjee, Doran and Peterson (2007) find that VIX usually 

reverts to its mean after around 44.1 trading days. Due to the mean-reverting nature of 

VIX and its negative relationship with stock index returns, it can be argued that VIX has 

the potential of being a valid indicator of future stock returns and hence different market 

profit possibilities regarding VIX movements have been researched. Especially evidence 

of a connection between high volatility and high expected stock returns and therefore 

viable market timing possibilities by using VIX have beeen found by researchers such as 

Giot (2005), Banerjee, Doran and Peterson (2007), Rubbaniy, Asmerom, Abbas and 

Naqvi (2014) and Smales (2017).  

 

The possibility of constructing profitable timing strategies with VIX combined with style 

rotation has not been studied as extensively as the basic relationship between future stock 

returns and VIX. However, the main findings of Copeland and Copeland (1999), 

Boscaljon, Filbeck and Zhao (2011) and Durand, Lim and Zumwalt (2011) suggest that 

especially the value effect is positively correlated with VIX movements and could 

therefore lead to good results in a VIX timing strategy. The strong correlation between 
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VIX changes and the value factor implies that during rising market uncertainty investors 

want to move their capital to safer investments from riskier investment vehicles and this 

can provide timing possibilities to investors interpreting VIX. In addition, Durand, Lim 

and Zumwalt (2011) find that the size and momentum premiums are as well positively 

correlated with VIX though the correlations are considerably weaker than with the value-

growth premium. 

 

1.1. Purpose of the thesis   

 

The purpose of this study is to investigate VIX as a potential timing tool when investing 

in equity markets and whether style rotation has an additional effect on the returns of a 

VIX timing strategy. The thesis examines how positions taken in S&P 500, Fama-French 

5 factors (Fama and French 2015) and momentum factor perform on different levels of 

VIX with different holding periods. The key method in this thesis is a 500-day rolling 

ranking method inspired by Giot (2005) to create relative ranks for different levels of 

VIX. The results of the Fama-French 5 and momentum factors’ returns on different levels 

of VIX are used to construct long-short portfolios for each factor so that a long position 

is taken in a factor portfolio on particular relative levels of VIX and a short position in the 

factor portfolio on certain other relative VIX levels. It needs to be highlighted, that the 

factor portfolios are not traditional long-short portfolios since only one position (long, 

short or no position) is taken at a time during the sample period whereas in a conventional 

long-short strategy a long and a short position is taken simultaneously. The long-short 

portfolio approach is used to examine how well in practice the VIX timing strategy 

combined with style rotation performs in the equity market and whether this kind of 

strategy generates acceptable trading costs from an investing perspective.  

 

1.2. Hypotheses 

 

Giot (2005) and Banerjee, Doran and Peterson (2007) find that future stock returns can 

be expected to be positive (negative) for very high (low) levels of VIX at least on a short-

term basis due to the mean-reverting nature of VIX and its strong relation with stock 

returns. These studies also agree that highest returns are generated for the longer short-

term holding periods and that average to moderately high levels of VIX result in 

unfavourable future returns. The findings of Rubbaniy, Asmerom, Abbas and Naqvi 
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(2014) are in line with the results of Giot (2005) and Banerjee, Doran and Peterson (2007) 

but differ for the holding periods of 1- and 5-day returns as the future returns for those 

holding periods provide no significant results in their research. Smales (2017) as well 

finds that the relation between market uncertainty and imminent stock returns is negative 

and that VIX provides superior explanatory power regarding future market returns. 

Furthermore, his results imply that changes in VIX, instead of its levels, seem to be better 

indicators in explaining market returns. Mainly based on these studies and the great 

amount of economic literature that documents a highly negative correlation between 

volatility and stock returns, the following first hypothesis for this thesis is formed: 

 

Hypothesis 1: Highest relative levels of VIX always lead to positive future stock returns 

in S&P 500 regardless of the holding period. 

 

The studies by Copeland and Copeland (1999) and Boscaljon, Filbeck and Zhao (2011) 

find evidence that especially the value effect is positively correlated with VIX 

movements. A notable difference between the studies is that Copeland and Copeland 

discover significant results with a holding period of two or more days while Boscaljon, 

Filbeck and Zhao find positive returns only for holding periods of 30 or more days. 

However, Boscaljon, Filbeck and Zhao argue that this difference can be explained by the 

heightened market awareness of the anomaly or shifts in correlations between S&P 500, 

value and growth portfolios followed by the study of Copeland and Copeland. The study 

by Durand, Lim and Zumwalt (2011) supports the findings of Copeland and Copeland 

(1999) and Boscaljon, Filbeck and Zhao (2011) regarding the value effect while 

additionally finding evidence of the size and momentum premiums being positively 

correlated with VIX. The results of Smales (2017), on the other hand, suggest that VIX 

affects returns across value and firm-size and that especially small-cap stocks and firms 

more susceptible to value are most exposed to market sentiment and in a negative relation 

with VIX changes. In addition, Peltomäki and Äijö (2015) find evidence of the 

contemporaneous correlations between VIX and the value and momentum factors being 

highly time-varying as their results show that the value effect becomes negatively 

correlated with VIX during financial crises and that the momentum premium becomes 

negatively correlated with VIX during expansionary states. This could suggest that it 

would in fact be more profitable to invest in growth (value) stocks rather than value 
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(growth) stocks when VIX is at its highest (lowest) levels which is the opposite of a value 

strategy. Based on these studies the second hypothesis for this study is formed: 

 

Hypothesis 2: The future returns of the size, value, profitability, investment pattern and 

momentum factors are affected by VIX levels.  

 

1.3. Structure of the thesis 

 

This study is comprised of a literature review, a theoretical part and the actual research 

part. In chapter 2, previous literature about the subject is presented and reviewed. In this 

part, several studies concerning the relation between volatility and stock market returns 

are reviewed both from a contemporaneous and a future perspective. In addition, style 

rotation and stock market timing with VIX is discussed in this chapter. The third chapter 

covers the theory of financial market risk and what basic volatility is. Implied volatility 

and its different features are also given a closer look in the chapter. The fourth chapter 

concentrates on the function and formation of VIX. VIX futures and options are also 

introduced in chapter 4. The fifth chapter addresses the theory of the Fama-French 5 

factors and the momentum factor and possible explanations for the factor effects.  

 

The research part of this study starts from chapter 6 where the research data is introduced. 

Then, the methodology for the study is presented in chapter 7. The eighth chapter covers 

the results and discussion of the research and finally, in chapter 9, the conclusions drawn 

from the study are presented. 
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2. LITERATURE REVIEW  

 

2.1. Negative asymmetric correlation between VIX and stock market returns 

 

Stock prices fall (rise) if expected market volatility increases (decreases) due to investors 

demanding higher (lower) rate of return on stocks. Thus, there is a negative correlation 

between stock index returns and VIX levels. This causality between S&P 500 and VIX 

can be easily detected below from figure 1 and is most noticeable especially during 

extreme market conditions. VIX was at its highest peak during years 2008 and 2009 which 

is explained by the credit and financial crises of that time. Another interesting and easily 

noticeable feature of figure 1 is the mean-reversion pattern of VIX. This means that when 

VIX level is high it tends to revert to its long run mean by going down, and when VIX is 

low it has a habit of being pulled back up. Thus, volatility is not expected to increase over 

time although stock values are anticipated to grow over the years to compensate for 

investors’ capital risk. (Whaley 2009.) By researching this phenomenon Banerjee, Doran 

and Peterson (2007) find that VIX usually reverts to its mean after around 44.1 trading 

days. Due to the mean-reverting nature of VIX and its negative relationship to stock index 

returns, it can be argued that VIX is a valid indicator of stock returns.  

 

 

 

Figure 1: Historical daily closing values of VIX and S&P 500 index throughout January 

2nd of 1990 until January 2nd of 2018 (Data Source: Yahoo Finance 2019). 
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The negative relation between volatility and stock returns is also asymmetric and 

therefore much more complex than it would seem at first glance. In practice, the 

asymmetric feature of the correlation means that negative return shocks tend to result in 

greater future volatility than equally sized positive return shocks. Therefore, the 

magnitude of the variation in future uncertainty is highly dependent on the return shock’s 

nature. Like the negative correlation between VIX and stock returns, the asymmetry is as 

well most evident during stock market crashes especially when a large drop in stock prices 

causes a significant rise in market volatility. (Wu 2001: 837.) Since market volatility is 

more prone to increase than decrease when stock return shocks occur, it can be stated that 

VIX is more of a measure of market fear than investors’ positive sentiment. Quite 

befittingly, it is also often referred to as the fear gauge. (Whaley 2009: 101.) 

 

Giot (2005) shows evidence of asymmetry in a simple extended regression analysis that 

allows for an asymmetrical correlation between simultaneous changes in one-day returns 

of S&P 100 and one-day relative changes in VIX between January 1986 and August 2002: 

 

(1)                VIX1dt = β0Dt
− + β1Dt

+ + β2(y1dtDt
−) + β3(y1dtDt

+ ) + ϵt 

 

 

Where  

 

VIX1dt= one-day relative changes of VIX and price of stock index 

 

y1dt= one-day returns on the stock index 

 

Dt
+= dummy variable that is equal to 1 (0) when y1dt is negative (positive) 

 

Dt
−= dummy variable that is equal to 1 (0) when y1dt is positive (negative) 

 

ϵt= error term 

 

The ending results show that β2 ≠ β3 (β̂2 = −4.72 and β̂
3

= −2.87) significantly, and 

therefore negative returns lead to comparably greater shifts in implied volatility (increase) 

than positive returns (decrease). 

 

Fu, Sandri and Shackleton (2016), on the other hand, find evidence of asymmetry between 

VIX and stock returns by decomposing VIX into volatility calculated from out-of-the-
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money call options and out-of-the-money put options. Their results reveal that the 

negative asymmetric relationship is stronger when using out-of-the-money put options. 

Information captured by out-of-the-money put options represents upward movement in 

volatility and downward movement in stock returns whereas out-of-the-money call 

options reflect the opposite effects. Thus, put options are more useful than call options in 

predicting future stock returns and contain especially negative news about the stock 

market.  

 

Various explanations for the asymmetric negative relationship between volatility and 

stock returns have been proposed and one of the most used explanations is the leverage 

effect which is discussed in studies such as Black (1976), Christie (1982), Schwert (1989) 

and Carr and Wu (2006). However, Schwert (1989) and Black (1976) among others 

conclude that leverage alone is not enough to give reason for the detected negative 

correlation and the asymmetry. The idea behind the leverage effect being the explanatory 

factor is that the risk of a firm’s stock increases when the equity level of the firm decreases 

while keeping the debt level fixed. This theory can then be also applied in a market level. 

Evidence for another popular explanation for the negative asymmetric relationship, which 

is called volatility feedback or time-varying risk premium theory, is found in numerous 

studies such as Pindyck (1984), Poterba and Summers (1986), French, Schwert and 

Stambaugh (1987), Haugen, Talmor and Torous (1991), Campbell and Hentschel (1992), 

Bekaert and Wu (2001) and Mayfield (2004). Volatility feedback refers to a phenomenon 

where a surge in volatility increases the anticipated future volatility and therefore the 

required compensation on stocks if volatility is persistent and priced. Furthermore, 

another suggested explanation by Whaley (2009) is that asymmetry is caused when there 

is an increased demand to buy index put options. Whaley argues that long index put 

options have started to dominate S&P 500 option markets in portfolio hedging as 

insurances when downside movement in stock markets is expected. Thus, further increase 

in volatility takes place due to increased demand for the options which are the underlying 

assets of VIX.  

 

The leverage and volatility feedback effects may together explain mostly the negative 

correlation and for example Bae, Kim and Nelson (2007) and Bekaert and Wu (2000) 

show in their empirical findings that both financial leverage and volatility feedback can 
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be causing the negative relationship although they both find that volatility feedback seems 

to be the more explanatory factor. Wu reasons these findings through an example event 

of supposed foreign market turmoil which has caused traders to be reluctant to buy and 

willing to sell as they await a volatile market. This leads to the volatility feedback effect 

as stock prices must decline to harmonize the buying and selling volume and therefore an 

immediate price drop follows the anticipated increase in volatility. Thus, the leverage 

ratio rises and as a result volatility increases and stock prices drop even more which is in 

keeping with the leverage effect.  

 

Hibbert, Daigler and Dupoyet (2008) suggest that neither the volatility feedback nor the 

leverage hypothesis is the main root of the return-implied volatility correlation. Instead, 

they argue that representativeness, affect and extrapolation biases, which are theories 

based on behavioral finance, are the key factors causing the phenomenon. Talpsepp and 

Rieger (2010) highlight that especially factors regarding non‐professional investor 

behavioral sentiment such as short selling, economic development, analyst coverage, and 

stock market participation are causing the effect. Avramov, Chordia, and Goyal (2006), 

on the other hand, suggest that herding and contrarian trades are behind the negative 

asymmetric return‐volatility phenomenon. They argue that, regardless of trading activity 

and volatility measures, contrarian trades cause a drop in volatility as stock prices rise 

while herding trades raise the market’s uncertainty when stock prices decline. By 

investigating the sources of asymmetric volatility and volatility clustering Yamamoto 

(2010) links the asymmetric return‐volatility anomaly to borrowing constrained herding 

agents since binding borrowing constraints add more selling pressure to the market as 

agents will wait to sell their shares. Due to herding the actions of agents are correlated 

which results in them being most likely to sell at once. This eventually leads to the overall 

phenomenon where negative return shocks tend to result in greater future volatility than 

an equally sized positive return shocks 

 

2.2. VIX as a predictor of future stock index returns 

 

Many studies find that VIX can function as a predictor of expected stock index returns 

and therefore also offer timing possibilities for investing in stock indices. Especially high 

levels of VIX are noticed to have a connection with high expected returns by multiple 
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studies such as Giot (2005), Banerjee, Doran and Peterson (2007) and Rubbaniy, 

Asmerom, Abbas and Naqvi (2014). This is a very logical theory due to the mean-

reverting nature of VIX: as VIX is at its highest levels it can be expected to come down 

in recent future while stock index returns increase simultaneously. In practice, however, 

it is hard to know when the VIX level is at its peak.  

 

Giot (2005) investigates whether the highest VIX levels can work as buying signals for 

investors and therefore indicate oversold stock markets. Giot confirms this assumption by 

dividing the historical level of VIX into 21 equally distributed rolling percentiles and 

investigating the S&P 100 stock returns for the future 1-, 5-, 20- and 60-day holding 

periods for each of these percentiles. The results indicate that future returns are always 

positive (negative) for very high (low) levels of VIX regardless of the holding period 

length even though the highest returns are generated for the 60 days holding period. 

Therefore, at least on a short-term basis, very high levels of VIX indicate an upcoming 

increase in stock indices. Giot also finds that average to moderately high levels of VIX 

result in unfavourable returns and therefore traders should then wait for further increases 

in VIX until it reaches extremely high levels. 

 

Banerjee, Doran and Peterson (2007) find similar results as Giot (2005) with VIX and 

S&P 500 stock returns in their study and notice that the relationship is stronger for the 60-

day returns than the 30-day returns. Unlike Giot, they also make a distinction between 

low-beta and high beta portfolios and find interesting evidence of higher beta portfolios 

having a stronger negative relationship with VIX. Thus, it should be more profitable to 

invest in high beta stocks as VIX reaches its peak to fully take advantage of the mean 

reversion pattern of VIX.  

 

Rubbaniy, Asmerom, Abbas and Naqvi (2014) research the forecasting power of implied 

volatility indices VIX, VXN (Nasdaq Volatility Index) and VDAX (Volatility Index of 

Deutsche Börse) regarding future stock returns for 1-, 5-, 20- and 60-day returns. Their 

findings for 20- and 60-day returns are consistent with the previously mentioned studies 

of Giot (2005) and Banerjee, Doran and Peterson (2007) but differ for the holding periods 

of 1- and 5-day returns as they find no significant link between short term returns and 

implied volatility indices for those holding periods. Although Rubbaniy, Asmerom, 
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Abbas and Naqvi (2014) state that implied volatility indices can be useful timing tools for 

the market, they emphasize that the information content of volatility indices alone is 

inadequate for predicting future market performance. They argue that volatility indices 

need to be combined with other forms of technical analysis especially for identifying the 

crucial points of market extremes or reversals.  

 

Even though most studies look at extremely high VIX levels as best stock index buying 

signals, there are some researchers who find that also other VIX timing strategies perform 

well. Lubnau and Todorova (2015) use rolling trading simulations to evaluate the 

performance of VIX and four other implied volatility indices as predictors of future stock 

returns. They execute their simulations by using the future returns of the corresponding 

underlying stock indices from January 2000 to October 2013 and find that significantly 

positive average returns follow days of very low implied volatility with the holding 

periods of 20, 40 and 60 trading days. These findings contradict the negative relationship 

between VIX and stock returns since profits are made when VIX level increases rather 

than decreases and suggest that markets tend to grow during calm periods and fall after 

volatility has been high. However, the study doesn’t directly conflict with the previously 

mentioned studies of Giot (2005), Banerjee, Doran and Peterson (2007) and Rubbaniy, 

Asmerom, Abbas and Naqvi (2014) since it does not conclusively confirm or deny 

whether high levels of implied volatility are good buying signals. In addition, the results 

show a clear difference between the US and non-US markets as the findings for US indices 

are largely heterogeneous and evidently less significant than for the other markets. 

 

An interestingly different approach to examining the predictive power of VIX is done by 

Bekaert and Hoerova (2014) as they break down the squared VIX into the equity variance 

premium and the conditional variance of stock returns. The division is made to assess the 

individual effects of both components of VIX. Conditional variance refers to stock market 

uncertainty while the variance premium can be understood as the expected premium that 

is attained when stock market variance is sold in a swap contract. Bekaert and Hoerova 

find evidence that the variance premium is evidently a more accurate indicator of stock 

returns whereas conditional variance only significantly predicts negative economic 

activity. However, conditional variance seems to indicate better financial instability than 
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the variance premium. These findings suggest that VIX can be decomposed to get more 

specific information about the markets. 

 

2.2.1. Style rotation and stock market timing with VIX  

 

Copeland and Copeland (1999) and Boscaljon, Filbeck and Zhao (2011) research the 

efficiency of VIX in timing shifts for value and growth stock allocation. They both use a 

method of percentage changes in VIX as indicators to switch from a growth portfolio to 

a value portfolio and vice versa. The results by Copeland and Copeland imply that growth 

stocks are outperformed by value stocks after an increase in VIX and vice versa whereas 

Boscaljon, Filbeck and Zhao find that positive returns can only be made by switching 

from growth style portfolios to value portfolios when VIX increases. The other major 

difference between the studies is that Copeland and Copeland discover significant results 

with a holding period of two or more days while Boscaljon, Filbeck and Zhao find positive 

returns only for holding periods of 30 or more days. Boscaljon, Filbeck and Zhao argue 

that these differences between the studies are most likely a result of  the market awareness 

of the anomaly that followed the study of Copeland and Copeland or simply changes that 

have gradually happened over the years in the correlations between S&P 500, growth and 

value portfolios.  

 

Durand, Lim and Zumwalt (2011) examine the market anomalies of value, size and 

momentum and their relation to expected returns of US equities from 1993 to 2007 by 

using the Fama-French three-factor model (1993) added with a momentum factor. They 

find evidence that especially the value factor is affected by VIX fluctuations so that 

growth stocks underperform (overperform) value stocks following a decrease (increase) 

in VIX which is in line with the previously mentioned studies of Copeland and Copeland 

(1999) and Boscaljon, Filbeck and Zhao (2011). In addition, the results show that the size 

and momentum premiums are as well positively correlated with VIX though the 

correlations are considerably weaker than with the value-growth premium.  

 

Peltomäki and Äijö (2015) use a non-forecasting approach to examine the 

contemporaneous relation between returns and cross-sectional anomalies but also 

investigate the time-varying aspect of those correlations. This is done by regressing the 
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daily returns on VIX and alternative state variables. They use a sample period from 1990 

to 2013 and discover interestingly that the relationships are highly time-varying and 

depend on economic and market conditions. They find evidence that the correlation 

between VIX changes and value strategy returns are generally positively correlated but 

show that during the financial crisis from 2007 to 2009 the correlation was significantly 

negative. The results show that momentum has also a positive relation with VIX 

movements but during expansionary states the correlation becomes negative implying that 

a momentum strategy becomes unprofitable when VIX increases during market 

expansions. These intriguing findings suggest that moving to value or momentum 

strategies is not always profitable when VIX increases: during financial crises value stock 

returns become negatively correlated with VIX and during market expansion periods poor 

momentum returns can be expected.  

 

Smales (2017) takes advantage of bi-directional tests of causality to examine the impact 

of VIX on stock returns and finds VIX to be a superior indicator of market sentiment that 

has the capability to provide valid forecasts for future market returns and improvement in 

model fit. He finds evidence of the relation between VIX and stock returns being negative 

for future returns and positive for contemporaneous returns and that VIX changes are 

better signals for explaining market returns than VIX levels. In addition, the results 

indicate that VIX affects returns across firm-size, value and industry and especially small-

cap stocks and firms more exposed to value are most sensitive to market sentiment and in 

a negative relation with VIX changes. Interestingly, these results contradict the findings 

by Copeland and Copeland (1999), Durand, Lim and Zumwalt (2011) and Boscaljon, 

Filbeck and Zhao (2011) who discover a positive relationship between VIX and the value 

and size premiums. Furthermore, Smales provides evidence of the relations between VIX 

and cross-sectional anomalies being highly dependent on market conditions and finds that 

market responses to VIX are even stronger during recession and especially for stocks that 

are most susceptible to speculative demand.  
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3. FINANCIAL MARKET RISK AND VOLATILITY  

 

Volatility is often misunderstood to be the same as risk even though it more accurately 

represents uncertainty and fluctuation. In economics, volatility can also be interpreted as 

the vulnerability of financial markets. Volatility as such is not a particularly useful 

measure and it needs to be incorporated in a probability distribution of returns to get 

results that are practical and can be evaluated. It is a crucial variable especially for pricing 

derivative securities of underlying assets, such as options. (Poon and Granger 2003.) For 

example, in the case of a stock index, volatility indicates the magnitude of the fluctuation 

of the index. 

 

As definition, volatility is usually calculated as the sample standard deviation of the 

historical returns of a financial instrument and it is often presented in an annual form. It 

is also notable that daily standard deviation can be converted to annual standard deviation 

and vice versa. Using this approach to calculate volatility results in a lognormal 

distribution which is almost correct, but not exact. A precise estimate can be attained by 

transforming the returns to logarithms of one plus the returns and then calculating the 

standard deviation in the same way. The difference in the accuracy of these approaches 

becomes greater when the measurement interval lengthens. (Kritzman 1991: 22–23.) 

 

Multiple studies show that stock market volatility changes constantly over time and thus 

there is a wide range of research regarding this phenomenon and the causes for it. Market 

volatility fluctuations have significant effects on business cycle variables such as capital 

investments and even consumption and therefore volatility studies are advantageous 

equally from an individual’s and society’s perspective. Market volatility changes are 

discovered to be in a positive relation to recessions and depressions and in a negative 

relation to trading activity. Financial leverage is also found to influence stock volatility: 

for instance, when companies issue new debt securities in bigger scale to new equity than 

before or stock prices decline with respect to bond prices, stock volatility rises. (Schwert 

1989.) In addition, even news about volatility, especially when volatility is already high, 

affect stock market volatility and returns (Campbell and Hentschel 1992). 
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3.1. Implied volatility 

 

Implied volatility is the market’s assessment of what the volatility of an underlying asset 

should be in the future and is most commonly used in the pricing of options. It is therefore 

a forward-looking volatility estimate as opposed to regular historical volatility. Implied 

volatility can be calculated by using an option-pricing model, such as the Black-Scholes 

model (1973) or Cox-Ross-Rubinstein binomial model (1979). In practice, implied 

volatility is derived from the current option prices when we know all other required 

variables of the model which are relatively easily observed. (Mayhew 1995: 8.) 

 

The definition of implied volatility can be seen dependent on the option pricing model 

where it is used. If deterministic variation of the volatility of the underlying asset volatility 

is allowed, implied volatility can be specified as the market’s estimate of the average 

volatility during the remaining life of the option. On the other hand, if the Black-Scholes 

model is used and its strict conditions are met, implied volatility is defined as the constant 

volatility parameter estimated by the market. (Mayhew 1995: 8.) 

 

The implied volatility of an option is widely accepted as an accurate assessment of the 

market's expectation of the future volatility of an asset, but there are also many studies 

that show that implied volatility has a weak or even no correlation with realized volatility. 

From these kind of findings Canina and Figlewski (1993) favour the interpretation that 

option pricing models lack factors that influence option supply and demand, such as 

investor behavioural aspects and liquidity considerations. They, however, admit that 

implied volatility is a useful measure that can be combined with other market information 

to get the true conditional expectation of future volatility. 

 

3.1.1. Black-Scholes option pricing model 

 

Fischer Black and Myron Scholes created a mathematical model used for pricing 

European options known as the Black-Scholes option pricing model (BSM) (1973). In the 

same year, Robert Merton (1973) contributed to the model by making an adjusted and 

more usable version of the model that is valid under weaker assumptions than the original 

model. The Black-Scholes option pricing model is still widely regarded as one of the best 
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ways of pricing options and it can be easily applied by traders and investors when all the 

required inputs are known. 

 

The assumptions of the Black-Scholes-Merton model are made on the underlying asset 

and the actual market. According to the model, the following ideal conditions are 

expected: 

 

• The risk-free interest rate is constant and same for all maturities 

• The underlying asset does not pay a dividend 

• Asset prices follow a geometric Brownian motion (random walk) and therefore 

have the same probability of going up or down. The error term and volatility of 

the underlying asset price are constant. 

• Security trading is continuous 

• The markets are frictionless and there are no transaction costs or fees. All 

securities are perfectly divisible.  

• The markets are perfectly liquid and there are no penalties to short selling.  

• There are no riskless arbitrage opportunities. (Hull 2015: 331.) 

 

It is not possible to solve implied volatility straightforwardly through the Black-Scholes 

model, but an it can be calculated by using an iterative search method. Implied volatility 

can be obtained by trying different values for volatility in the model when the value of a 

European option and all other inputs are known. The range for volatility can be halved 

through each iteration and proceeding this way leads eventually to getting the exact 

implied volatility. In practice, however, more efficient methods are used more often to 

calculate implied volatility. (Hull 2015: 341.) Below are the standard Black-Scholes-

Merton formulas for pricing European call and put options.  

 

(2)                c = S0ℕ(d1) − Kⅇ−rTℕ(d2) 

 

 

(3)                p = Kⅇ−rTℕ(−d2) − S0ℕ(−d1) 

 

 

Where 
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d1 =
ln (

S0

K ) + (
r + σ2

2
) T

σ√T
 

 

 

d2 = d1 − σ√T 

 

 

S0 = current stock price 

 

K = option striking price 

 

T = time to maturity 

 

r = risk-free interest rate 

 

ℕ = cumulative standard normal distribution 

 

σ = volatility of underlying asset 

 

  

3.1.2. Volatility term structure 

 

Volatility term structure refers to the correlation between implied volatility and maturity 

of an option and it is used by traders when pricing options. When short-dated volatilities 

are historically low (high), volatility tends to increase (decrease) as maturity increases 

(decreases). This is caused by the expectation of an increase in volatility due to historically 

low volatility levels and vice versa. (Hull 2015: 438.) Volatility term structure can be 

described as the market’s view of what future volatility will be with different maturities 

and it can be presented in an upward or downward sloped linear function depending on 

the market expectations. 

 

The volatility term structure phenomenon is an abnormity of the BSM since volatility 

does not stay constant through different maturities. The cause for volatility term structure 

is not undisputedly clear: some economists rationalize it for example through overreaction 

and mispricing of securities in predictable ways whereas some simply believe in supply 

and demand being the explanatory factors for it. Furthermore, evidence of the volatility 

term structure’s slope factor being a significant sign of future short-dated implied 

volatility has been found. (Mixon 2007.)  
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3.1.3. Volatility smile 

 

The volatility smile is a graphic plot of the implied volatility of an option as a function of 

its strike price. It contradicts the BSM which expects implied volatility to be the same for 

all options that have the same maturity and strike price. The reason why volatility smiles 

occur depends on the type of the option. Valid explanations for equity option volatility 

smiles are volatility fluctuations due to company’s equity value changes and traders being 

concerned about stock market crashes and thus pricing options accordingly 

(crashophobia). It is therefore not surprising that volatility smiles for equities were first 

discovered after the stock market crash in 1987. It is also notable that European call and 

put options have the same volatility smile where volatility decreases as the strike price 

increases. (Hull 2015: 431–437.) When implied volatility is derived from an option 

pricing model that doesn’t consider change in volatility or crashophobia, such as the BSM, 

it becomes curved in relation to different strike prices. The implied volatility forms a 

graph that is shaped as a downward skewed smile.  

 

 

Figure 2: Volatility smile for equities (Hull 2015: 436). 
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An implied or risk-neutral probability distribution for an asset price at a future time at 

maturity can be derived from the volatility smile. The implied distribution has a heavier 

left tail compared to its right tail than the regular lognormal distribution and therefore it 

can be stated that the lognormal distribution underestimates the likelihood of severe 

negative shifts and overstates the positive movements in asset prices. Therefore, the 

volatility of a stock can be expected to be a declining function of the stock price. It is also 

notable that mediocre fluctuations have a lower probability in an implied distribution. 

(Hull 2015: 433–437.) Jackwerth and Rubinstein (1996) study these probability 

distributions due to increased popularity of derivatives and many overt failures to control 

the risk that they contain. Through stock market crashes and large drops in stock indexes 

they show that lognormal distributions don’t capture the true probability of extreme events 

and this is due to the smile effect of stock options.  

 

 

Figure 3: Implied distribution and lognormal distribution for equity options (Hull 2015: 

437). 
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Volatility smiles and volatility term structures can be combined to make tables which 

show the explicit volatilities for pricing options with any maturity and strike price. (Hull 

2015: 438–439). Volatility surfaces have also been adjusted in other ways to for example 

take into account arbitrage possibilities (Fengler 2009). 
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4. VOLATILITY INDEX 

 

Volatility index (VIX) is a measure that reflects the stock market’s volatility expectations 

calculated and published by the Chicago Board Options Exchange (CBOE). It makes an 

estimation of expected volatility over the next 30 days by averaging the weighted prices 

of S&P 500 calls and puts over various strike prices. VIX is a popular indicator of stock 

market uncertainty and is therefore often referred to as the fear gauge. It was initially 

presented in 1993 as a gauge of the market’s expectation of 30-day volatility implied by 

at-the-money Standard and Poor’s 100 Index (S&P 100) option prices. In 2003 CBOE 

constructed in cooperation with Goldman Sachs the current and improved VIX based on 

the S&P 500 index which is the most important index for U.S. equities. VIX was further 

enhanced in 2014 when CBOE chose to add also weekly S&P 500 options in the formation 

of the index. (CBOE 2019.) 

 

Blair, Poon and Taylor (2001) compare the predictive power of VIX to ARCH models 

regarding volatility forecasting throughout a sample period from 1987 to 1999 in S&P 

100. They find that in-sample analyses of low- and high-frequency data using ARCH 

models are clearly less effective in forecasting volatility than VIX. The results remain the 

same regardless of the length of the forecast or the definition of realized volatility. Blair, 

Poon and Taylor also notice in their study that the already superior performance of VIX 

compared to ARCH models increases even further when the forecast horizon grows and 

combinations of VIX and other forecasts are merely more informative than VIX when 

using 1- or 5- day forecasting. Furthermore, the predictive power of VIX has been 

compared to other indices that reflect pessimistic market sentiments and for example 

Habibah, Rajput and Sadhwani (2017) find that VIX is a superior predictor of stock 

market returns compared to the popular Google search volume indices (GSVI). 

 

It is important to highlight that VIX is a forward-looking index since it is constructed from 

the implied volatilities of S&P 500 options and therefore doesn’t measure volatility that 

has been realized. From this perspective, VIX can be compared to a bond’s yield to 

maturity which connects a bond’s price to the current value of the payments it promises. 

Thus, the yield of a bond is implied by the bond’s price and depicts the bond’s expected 

future return until it reaches maturity. VIX functions in the same way as it is implied by 
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the present S&P 500 option prices and shows expected future stock market volatility for 

the next 30 calendar days. (Whaley 2009: 98.) The historical daily closing level of VIX 

has usually been between 10 to 20 points, but there have also been larger spikes even up 

to 80 points especially during financial crises which can be seen below in figure 4.  

 

 

 

Figure 4: Historical daily closing values of VIX throughout January 2nd of 1990 until 

January 2nd of 2018 (Data Source: Yahoo Finance 2019). 

 

Regarding the use of VIX it is worth noting that while it provides an estimate of the 

average level of individual stock volatilities, it is mostly utilized by market participants 

for assessing portfolio or market risk which cannot be mitigated through portfolio 

diversification (Fleming, Ostdiek and Whaley 1995). It is also shown in multiple studies 

that VIX can offer various timing possibilities for different portfolio strategies.  Copeland 

and Copeland (1999), for instance, find that when volatility increases (decreases) large-

cap and value portfolios outperform (underperform) small-cap and growth portfolios. 

Another interesting and timely aspect of VIX has been the introduction of VIX futures 

and options that have become popular and attractive tradable products for investors. 
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Especially VIX options have been very successful since CBOE launched them in 2016. 

(CBOE 2019.) 

 

4.1. VIX calculation 

 

VIX was originally calculated from the prices of only eight at-the-money S&P 100 index 

call and put options since they were the most traded options at the time. As S&P 500 index 

options became gradually more favoured than S&P 100 index options, CBOE decided in 

2003 to start using instead S&P 500 index option prices in the calculation of VIX. Another 

reason adding to the shift was that S&P 500 index options are European styled options 

which means that they are exercisable only at expiration and therefore simpler to value by 

using option pricing formulas. When CBOE started using S&P 500 index option prices 

for calculating VIX, they also decided to add out-of-the-money options in the index 

computation since they hold essential information concerning portfolio insurance 

demands and, thus, market volatility. Furthermore, incorporating supplementary option 

series simply helped to make the VIX less responsive to any single option price, and thus 

less vulnerable to manipulation. (Whaley 2009: 99.) 

 

The generalized formula used in the VIX calculation is:  

 

(4)                σ2 =
2

T
Σi

ΔKi

Ki
2 ⅇRTQ(Ki) −

1

T
[

F

K0
− 1]

2

 

  

Where 

 

σ = VIX ⁄ 100 ⇒ VIX = σ x 100  

 

T = time to expiration  

 

F = Forward index level derived from index option prices  

 

K0 = First strike below the forward index level, F  

 

Ki = Strike price of ith out-of-the-money option; a call if Ki > K0 and a put if Ki < K0 and 

both put and call if Ki = K0  

 

ΔKi = Interval between strike prices – half the difference between the strike on either side 

of Ki:  

 

ΔKi = (Ki+1 − Ki−1)/2 



33 

 

(Note: ΔK for the lowest strike is simply the difference between the lowest strike and the 

next higher strike. Likewise, ΔK for the highest strike is the difference between the highest 

strike and the next lower strike.) 

 

R = Risk-free interest rate to expiration  

 

Q(Ki) = The midpoint of the bid-ask spread for each option with strike Ki. (CBOE 2019.)  
 

 

The formula for VIX differs considerably from the BSM formula. VIX is derived from a 

weighted sum of option prices, whereas a Black-Scholes implied volatility is acquired 

from a single option price. VIX also takes into account the volatility smile or volatility 

skew that emerged after the stock market crash in 1987. Thus, VIX is a more consistent 

and reliable measure that doesn’t compel volatility to be constant and therefore a better 

option for measuring expected volatility. The VIX calculation uses S&P 500 at-the-money 

and out-the-money call and put options with 23 to 37 days to maturity and includes 

Weekly S&P 500 options and S&P 500 options with the standard expiration day which is 

the third Friday of the month. Weekly S&P 500 options expire each Friday excluding the 

third Friday of each month. The calculation therefore uses a rolling method where the 

S&P 500 options roll forward into new contract maturities every week. (CBOE 2019.) 

 

4.2. VIX futures and options 

 

VIX futures and options provide investors a way to trade directly volatility and make a 

profit from volatility increases or decreases. The most obvious difference between the two 

derivatives is that a VIX futures contract represents $1000 times the index whereas the 

corresponding multiplier for VIX options is $100. CBOE launched the first exchange-

traded VIX futures contract in 2004 which was followed by the introduction of VIX 

options two years later in 2006. VIX futures and options have been popular products 

among traders and just after ten years since their launch the joint trading volume of VIX 

options and futures had grown to over 800,000 contracts daily. VIX futures and options 

can also be used for example for diversification benefits in investment portfolios due to 

the well documented negative correlation between volatility and stock market returns. 

(CBOE 2019.) Open interest and volume of VIX derivatives have increased considerably 

especially due to the significant volatility changes throughout the recent financial crisis 
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that started in 2008 and the elevated need for hedging against volatility changes (Zhang, 

Shu and Brenner 2010: 810). 

 

 

 

Figure 5: Average daily volumes of VIX futures per year (Data source: CBOE 2019). 

 

 

 

Figure 6: Average daily volumes of VIX options per year (Data source: CBOE 2019). 
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It is possible to invest in VIX by taking a position in VIX futures or VIX options. VIX 

fluctuations depend on actual changes in implied volatility whereas the prices of VIX 

futures and options depend on the current predictions of what the expected 30-day 

volatility is going to be on the expiration date. Therefore, hypothetically, VIX options and 

futures should converge to the spot rate of VIX at expiration. In practice, however, this is 

very exceptional as there can be major differences between spot VIX and VIX futures and 

options before and at expiration. (Szado 2009: 72–73.)  

 

VIX cannot be sold or bought and therefore there is no tradable asset underlying the VIX 

futures. Hence, there is not a usual cost-of-carry relation and arbitrage mechanism 

between VIX futures and VIX like with regular market futures. The mean-reverting nature 

of volatility makes the connection between spot VIX  and VIX futures even more 

complicated since it partially leads to VIX being considerably more volatile than VIX 

futures. The mean-reverting nature of volatility must also be reflected in the pricing of 

VIX options. VIX options have many other unique features and for instance tend to exhibit 

extremely high volatilities which is in accordance to the phenomenon of high volatility of 

volatility. This means that the volatility of VIX tends to be much higher compared to 

equity indices or even separate equities’ volatilities. (Szado 2009.) 

 

VIX futures and options can be used for diversification and hedging benefits although the 

subject is very controversial. Dash and Moran (2007) find evidence that investing in VIX 

reduces the risk of the portfolio, but it also means giving up on some returns. Their results 

show that including even a modest amount of exposure to volatility can be used to control 

downside risk and boost an equity portfolio’s risk-return characteristics. Alexander and 

Korovillas (2013), on the other hand, find that VIX derivatives portfolios perform better 

than portfolios that consist purely of equities during severe market conditions.  
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5. FAMA-FRENCH 5 FACTORS AND MOMENTUM FACTOR 

 

In 1992 Fama and French (1993) introduced their three-factor model to explain the cross-

sectional variance of returns that consists of three common risk factors for stocks: market 

risk, firm size and book-to-market. The model broadens on the capital asset pricing model 

(CAPM) by incorporating value and size risk factors with the already existing market risk 

factor in CAPM and is based on their previous findings that the CAPM is horizontal when 

book-to-market ratios and market values in returns are controlled for (Fama and French 

1992). Incorporating the market risk variables into the model is not straightforward and 

thus Fama and French use mimicking portfolios that convert firm fundamentals into more 

flexible and frequent series to create the factors. Their model shows that indeed firm size 

and book-to-market factors are sensitivity proxies to common risk factors in stock returns 

and tend to generate better returns than expected by the CAPM. Thus, the Fama-French 

three-factor model has become a major benchmark for investigating new factors and 

striving to create a more complete CAPM. Later, in 2014, Fama and French (2015) 

expanded their three-factor model by including profitability and investment pattern risk 

factors into the original model and thus created the widely popular Fama-French 5-factor 

model. In their study, Fama and French show that the five‐factor model performs even 

better than the three-factor model in explaining the cross-section of U.S. stock returns and 

according to the model small, profitable and high book-to-market companies with no 

major growth prospects attain the highest expected returns. Below is the formula for the 

Fama-French 5-factor model (Fama and French 2015): 

 

(5)              Rit − RFt =  αi + bi(RMt − RFt) +  siSMBt  +  hiHMLt + riRMWt +  

                    ciCMAt +  ⅇit 

 

Where 

 

Rit = return on a security or portfolio i for period t  

 

RFt = risk-free return 

 

RMt = value-weighted market portfolio return  

 

SMBt = difference between the return on diversified portfolios of small and big stocks 

portfolio minus the return on a diversified portfolio of big stocks 
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HMLt = difference between the returns on diversified portfolios of high and low book-to-

market stocks 

 

RMWt = difference between the returns on diversified portfolios of stocks with robust and 

weak profitability 

 

CMAt = difference between the returns on diversified portfolios of the stocks of low and 

high investment firms 

 

 ⅇit = zero-mean residual. (Fama and French 2015.) 

 

5.1. Size effect 

 

The first to make a detailed paper regarding the connection between market values and 

the cross section of returns was Banz (1981). He investigates the empirical connection 

between NYSE common stocks’ returns and market values and discovers that, on average, 

small firms have significantly higher risk-adjusted returns compared to large firms. In 

addition, Banz detects that the prime anomaly response is found within the smallest firms 

and there is only a slight discrepancy between the returns generated by large and average 

sized firms. Thus, he demonstrates that the size effect is not linear regarding market value. 

Banz fails to provide a definite explanation for the size effect but proposes that it might 

be caused by mergers as large corporations have the advantage of being able to pay a 

premium for small firms’ stocks due to their ability to discount identical cash flows at a 

considerably lower discount rate.  

 

Two years after the publication of their three-factor model, Fama and French (1995) 

connected the size and book-to-market factors to profitability as they tried to provide an 

economic foundation for the factor effects. In their study they focus on whether the 

behavior of stock prices reflects the behavior of earnings with respect to size and book‐

to‐market‐equity and discover that smaller and high book-to market firms that have high 

earnings maintain high earnings around earnings announcements and vice versa. Thus, 

they find evidence of the size effect being a result of the riskiness of low earnings 

persistence. 

 

Chan and Chen (1991), on the other hand, propose that the size effect is linked to firms 

that carry more risk and are therefore more sensitive to economic downturns. They notice 

in their study that a small firm portfolio consists largely of firms with high financial 
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leverage and low production efficiency and thus argue that there ought to be a risk 

premium for investing in small firms. After the early discovery of the size premium the 

effect has been considered to have died by some studies as the markets have presumably 

exploited the effect away (Ang 2014). This has also led to the recent economic literature 

regarding the size effect not being as comprehensive as the early studies of the anomaly.  

 

5.2. Value effect 

 

In 1934 Graham and Dodd laid the groundwork for value investing with their book 

“Security Analysis” as they proposed that investors should emphasize buying comparably 

undervalued and selling overvalued stocks. Later, the research by Graham and Dodd 

inspired groundbreaking studies such as Stattman (1980), Rosenberg, Reid and Lanstein 

(1985) and Fama and French (1993) that showed that book-to-market ratios have the 

capability to explain cross-sectional variations in stocks and confirmed that indeed high 

book-to-market (value) stocks seem to outperform low book-to-market (growth) stocks.  

 

Many of the explanations proposed for the value effect are the same as the risk-based 

explanations for the size effect anomaly and for example earnings persistence (Fama and 

French, 1995) and relative distress premia (Chan and Chen 1991) have been found to be 

linked to the phenomenon. Likewise, Petkova and Zhang (2005) find evidence of value 

(growth) stock betas being positively (negatively) correlated with expected market risk 

premiums indicating that growth stocks are less responsive to wide market fluctuations 

than value stocks. Thus, value stocks follow more closely economy-wide trends than 

growth stocks and are more affected by both economic downturns and upturns.  

 

Lakonishok, Shleifer and Vishny (1994), however, argue that a behavioral explanation is 

behind the value effect instead of value stocks being fundamentally riskier. They propose 

that the higher returns of value strategies are caused by the suboptimal behavior of typical 

investors which is then capitalized on by more superior and optimal investors. 

Furthermore, they find evidence that value betas are higher than growth betas during good 

economic states, but lower during poor times of the economy. Bhushan (1989), Daniel 

and Titman (1997) and Jegadeesh, Kim, Krische and Lee (2004) show evidence of the 

value effect being caused by investors’ preferences for certain stock characteristics. They 
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suggest that the value effect anomaly is due to high book-to-market companies being 

unattractive to investors while low book-to-market companies are found to be more 

glamorous and exciting by investors. 

 

5.3. Profitability and investment effects 

 

Fama and French (2015) added the robust-minus-weak (RMW) profitability factor and 

the conservative-minus-aggressive (CMA) investment factor to their three-factor model 

to create the five-factor model. Their inspiration for incorporating the two new 

components to the model came from papers such as Novy-Marx (2013) and Aharoni, 

Grundy and Zeng (2013) that criticized the three-factor model for leaving much of the 

variation in stock prices unexplained and showed that expected stock returns are 

positively correlated to profitability and negatively correlated to investment. 

 

Although Haugen and Baker (1996) already discovered the profitability effect empirically 

in 1996, researchers started to pay more attention to it as late as around the publication of 

the Fama-French 5-factor model (2015). Thus, the economic literature regarding the effect 

is not as comprehensive as for example for the size and value effects. Sun, Wei and Xie 

(2014) provide a behavioural explanation for the profitability effect as they find evidence 

of the effect being more powerful in countries that have lower frictions for investing, such 

as the U.S. and weaker in countries with high limits to arbitrage such as China. Lam, 

Wang and Wei (2016) discover similar results as they show that adding a mis-valuation 

factor based on investor sentiment to macroeconomic risk factors helps substantially in 

explaining the anomaly. In addition, they find that unexpected cash-flows have a 

significant effect on the profitability anomaly as their results imply that high profitability 

firms that are considered low in value by the market generate substantially greater 

abnormal returns around earnings announcements and have more forecast reexaminations 

and modifications as well as errors in analyst earnings forecasts. 

 

The negative investment-return effect has been studied more extensively than the 

profitability effect and both risk-based and behavioural explanations have been proposed 

for it in economic literature. Berk, Green and Naik (1999) link the investment effect to 

the decline of systematic risk due to high availability of low risk projects. They argue that 
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firms tend to invest more when the amount of low risk projects increases. Thus, as 

systematic risk and returns are positively correlated, higher investment activity should 

result in both a decrease in systematic risk and returns allowing lower returns especially 

for aggressive growers. The paper by Carlson, Fisher and Giammarino (2004) supports 

the findings by Berk, Green & Naik (1999) as they use a similar approach but add to their 

study steady adjustment expenses, reversible real options, operating leverage and limited 

growth opportunities. They find that the systematic risks of assets change throughout time 

with historical investment decisions and that a firm’s beta decreases through investing. 

Cooper and Priestley (2011) as well confirm in their paper that systematic risk declines 

during large investment periods. Furthermore, they propose that the negative investment 

premium might be the result of conservative investors being often large firms that are 

more sensitive to economic cyclicality while aggressive investors tend to be more flexible 

growth firms that can effortlessly reduce their activity when the economy is trending 

down. Titman, Wei and Xie (2004), on the other hand, propose a behavioural explanation 

for the investment effect and argue that the constant underreaction of investors to the 

implications of increased investment expenditures by so-called empire building managers 

are causing the phenomenon. 

 

5.4. Momentum effect 

 

The fundamental concept behind a momentum strategy is to take advantage of stocks that 

are experiencing a positive or negative trend and is often summarized as a strategy of 

buying “winners” and selling “losers”. In practice, the strategy is executed by constructing 

winner and loser portfolios during the past J months and keeping them for K months. 

Thus, the strategy uses historical stock prices to find the momentum trends and is 

classified as an anomaly in economic science as according to the weak forms of efficiency 

historical prices should not include any information regarding the forthcoming 

development of stock prices. The anomaly has been widely researched and documented 

to generate excess returns in numerous markets. (Bodie, Kane and Marcus 2011: 386.)  

 

The benchmark study for momentum research is the study by Jegadeesh and Titman 

(1993) where they document the momentum effect in the U.S. stock market between 1965 

and 1989. They discover substantial positive returns for the holding periods from 3 to 12 
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months. In addition, Jegadeesh and Titman argue that the anomaly is not caused by 

postponed market responses to common factors or systematic risk. The research by 

Rouwenhorst (1998) supports the findings by Jegadeesh and Titman (1993) as they 

examine international momentum effects and find that the positively trending stocks 

outperform the negatively trending stocks roughly by one percent per month. Multiple 

studies, however, have linked the performance of momentum strategies to riskiness. 

Moskowitz and Grinblatt (1999) show that momentum strategies become much less 

rewarding when industry momentum is controlled for suggesting that the momentum 

effect is tilted only towards a few industries. Chordia and Shivakumar (2002) link the 

momentum effect to market risk as they discover a connection between the predictability 

of a series of lagged macroeconomic variables associated with the business cycle and 

momentum profits. When they control for these variables all significant momentum 

payoffs are eliminated. In addition, they show evidence of the momentum effect being 

time-varying and only present in expansionary periods of the economy. Avramov, 

Chordia, Jostova and Philipov (2007), on the other hand, argue that the momentum 

premium is due to firm credit ratings as they show evidence that only firms with low 

credit ratings exhibit positive momentum returns. Thus, their findings imply that extreme 

winner and loser portfolios mostly consist of low-grade stocks in terms of credit rating. 

 

In addition to risk-based views, multiple behavioural explanations for the momentum 

effect have been proposed although the majority of them agrees with the studies by 

DeBondt and Thaler (1985, 1987) that the anomaly is due to the tendency of most market 

participants to overreact to sudden and climactic stock news. DeBondt and Thaler (1985, 

1987) justify their position by showing that prior losers distinctly outperform previous 

winners and have produced approximately 25% more than the winners thirty-six months 

after the construction of the portfolios. DeLong, Shleifer, Summers and Waldman (1990) 

argue that the overreaction phenomenon is due to noise traders who cause rational 

speculators to strengthen the trend with more purchases. This can then lead to noise 

traders becoming even more eager to push prices further away from their fundamental 

values. Daniel, Hirshleifer and Subrahmanyam (1998) rationalize the overreaction effect 

by showing that stock prices underreact to public information and overreact to private 

news signals. This tendency of the markets to over‐ or underreact to various types of news 

then causes the momentum pattern.  
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6. DATA 

 

All data for this thesis is collected from the world wide web and can be accessed by 

anyone freely. The VIX and S&P 500 data is compiled from the website 

www.finance.yahoo.com. Due to S&P 500 not being directly tradable, the data for 

exchange-traded fund SPY (SPDR S&P 500 ETF) is utilized to reflect the movements of 

S&P 500. Furthermore, all data is modified to consider dividends and splits and all the 

returns applied in this thesis are transformed into logarithmic returns. The daily data used 

for SPY, Fama-French 5 factors and momentum factor is collected from a period starting 

from 29th January 1993 and ending on 31st December 2018. For VIX the used data starts 

500 trading days prior to 29th of January to determine the ranks for VIX for the beginning 

of the equity data. The final trading day for VIX is also 31st December 2018.  

  

The definitions and data for the Fama-French 5 factors and the momentum factor can be 

found from Kenneth French’s website (Kenneth French Data Library 2019):  

  

Mkt-Rf is the excess return on the market. The market return in this data is a value 

weighted return of a large number of firms listed on NYSE, AMEX or NASDAQ minus 

the one-month treasury bill rate.  

  

SMB is the average return on the nine small stock portfolios minus the average return on 

the nine big stock portfolios formed as follows:  

 

(6)                SMB(B/M) = 1
3⁄ (Small Valuⅇ + Small Nⅇutral + Small Growth) −

                      1 3⁄ (Big Valuⅇ + Big Nⅇutral + Big Growth)  

 

                      SMB(OP) = 1
3⁄ (Small Robust + Small Nⅇutral + Small Wⅇak) −

                      1 3⁄ (Big Robust + Big Nⅇutral + Big Wⅇak)  

 

                      SMB(INV) = 1
3⁄ (Small Consⅇrvativⅇ + Small Nⅇutral +

                      Small Aggrⅇssivⅇ) − 1
3⁄ (Big Consⅇrvativⅇ + Big Nⅇutral +

                      Big Aggrⅇssivⅇ)  

 

                   SMB = 1
3⁄ (SMB(B/M) + SMB(OP) + SMB(INV)), 
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where B/M indicates value or growth stock, OP stands for operating profit and INV means 

investment pattern of conservative or aggressive stock. 

 

HML is the average return on the two value portfolios minus the average return on the 

two growth portfolios.  

 

(7)                HML = 1
2⁄ (Small Valuⅇ + Big Valuⅇ) − 1

2⁄ (Small Growth +

                      Big Growth)   
 

RMW is the average return on the two robust operating profitability portfolios minus the 

average return on the two weak operating profitability portfolios.  

 

(8)                RMW = 1
2⁄ (Small Robust + Big Robust) − 1

2⁄ (Small Wⅇak +

                      Big Wⅇak)    
  

CMA is the average return on the two conservative investment portfolios minus the 

average return on the two aggressive investment portfolios.  

 

(9)                CMA = 1
2⁄ (Small Consⅇrvativⅇ +  Big Consⅇrvativⅇ) −

                      1
2⁄ (Small Aggrⅇssivⅇ + Big Aggrⅇssivⅇ).   

 

A complete and more detailed description of the Fama-French 5 factor returns can be 

found in the paper of Fama and French (2015). 

 

MOM is the average return on the two high prior return portfolios minus the average 

return on the two low prior return portfolios. The median of NYSE market equity is the 

daily size breakpoint for the factor and the daily prior (2-12) return breakpoints are the 

30th and 70th NYSE percentiles. 

 

(10)                MOM = 1
2⁄ (Small High + Big High) − 1

2⁄ (Small Low +

                         Big Low)    
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7. METHODOLOGY 

 

The methodology of this thesis is based on the research made by Giot (2005) and 

examines whether high (low) VIX levels are useful buying (selling) indicators for SPY, 

Fama-French five factors and momentum factor. The holding periods used in this study 

are 1, 5, 20 and 60 days which are the same as in the study by Giot (2005). These holding 

periods are optimal and valid for this study as Banerjee Doran and Peterson (2007) 

discover the mean reversion of VIX to be approximately 44.1 trading days.   

  

Firstly, a plain analysis between VIX and SPY, Fama-French 5 factors and momentum 

factor correlations is carried out in this study by using daily logarithmic returns. After 

that, in the main study, the usability of relative VIX levels as timing indicators is under 

examination by dividing VIX levels into 20 percentiles with a 500-day rolling method. 

Relative values of VIX are used because it is not possible to define absolute boundaries 

for high and low levels of VIX. In addition, long-short portfolios for each factor are 

formed based on the ranking method results so that for example extremely low (high) 

levels of VIX are signals to take a short (long) position in a certain factor portfolio. This 

is done to determine how well the factors perform when they are used in an equity 

investing strategy that relies on VIX as a timing tool. 

  

7.1. VIX ranking system  

  

Since the ranking system used in this study utilizes a 500-day rolling approach, the 

estimation interval for VIX is 500 days, T0 so that T0+1 is then given a rank between 1 

and 20. The given rank is determined by the rolling approach so that, for example, rank 1 

signifies that the observation belongs at least to the lowest 5% levels of VIX over the 

previous 500 days and rank 20 implies that the measurement is higher than at least 95% 

of VIX observations in the sample during the previous 500 days. This method is almost 

identical to the one used by Giot (2005) since Giot uses a two-year rolling method and 

the same ranking system in his study. A major benefit of the rolling method is that the 

outer limits for the percentiles do not fluctuate rapidly even though VIX might 

occasionally exhibit drastic daily changes.  
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Table 1 is a demonstration of the ranking for VIX if the whole sample history would have 

been used instead of the rolling method. The rank can be seen in the first column and the 

second column represents the equivalent percentile for every rank. The third column 

demonstrates what the actual upper boundaries would be in in terms of VIX values for 

the ranks if the sample history would have been used. The table shows that VIX receives 

the highest rank when its values are between 80.86 and 33.96 and the lowest rank when 

its values are equal to or below 11.15. It is also notable that the differences between VIX 

percentile boundaries become continuously smaller from higher ranks to lower ranks.  

 

Table 1: Historical percentile ranks and upper boundaries for VIX from 29th January 

1993 to 31st December 2018. 

 

RANK Percentile Upper boundary 

R20 95-100 80.86 

R19 90-95 33.96 

R18 85-90 28.81 

R17 80-85 26.00 

R16 75-80 24.33 

R15 70-75 22.88 

R14 65-70 21.65 

R13 60-65 20.59 

R12 55-60 19.52 

R11 50-55 18.49 

R10 45-50 17.39 

R9 40-45 16.43 

R8 35-40 15.59 

R7 30-35 14.75 

R6 25-30 14.03 

R5 20-25 13.37 

R4 15-20 12.84 

R3 10-15 12.30 

R2 5-10 11.76 

R1 0-5 11.15 
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Table 2 shows the minimum, maximum, mean and median values for VIX for the sample 

period. The highest value, 80.86, occurred in the middle of the financial crisis on 20th 

November 2008 and the lowest value, 9.14, on 3rd November 2017. 

 

Table 2: Historical VIX statistics from 29th January 1993 to 31st December 2018. 

   

  VIX Date 

Min 9.14 3.11.2017 

Max 80.86 20.11.2008 

Mean 19.33  

Median 17.39   

 

 

7.2. Return calculation method for different ranks 

  

The return calculation approach that is utilized to estimate the average returns for SPY 

and factor portfolios is the same that is used by Giot (2005). The SPY and factor portfolio 

returns are regressed on 20 ranks and each rank is represented by a dummy variable. The 

ranks receive either the value of 0 or 1 which is determined by the rank that VIX has on 

a particular day so that only one rank is given the value of 1 and all other ranks the value 

0. Below are the regression models applied in this study.  

 

(11)              r1d =  β1D1𝑡  +  β2D2𝑡  + … +  β21D20𝑡  +  εt  
 

 

(12)              r5d =  β1D1𝑡  +  β2D2𝑡  + … +  β21D20𝑡  +  εt  
 

 

(13)              r20d =  β1D1𝑡  +  β2D2𝑡  +  … +  β21D20𝑡  +  εt  
 

 

(14)              r60d =  β1D1𝑡  +  β2D2𝑡  +  … +  β21D20𝑡  +  εt 
 

 

Where r1d, r5d, r20d and r60d are the 1-, 5-, 20- and 60-day returns for SPY and factor 

portfolios and D1, D2, D3…, D19 and D20 depict the dummy variables for different 

ranks. Each return coefficient may be understood as the anticipated return at the given 
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time horizon when VIX is ranked into category R𝑡  at time t and thus it is crucial to 

highlight that all regression returns are separate and individual.  
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8. RESULTS AND DISCUSSION 

 

The results segment of this study starts with two correlation analysis tables where the 

correlation between VIX and SPY and factor portfolios is examined. Table 3 below 

displays the overall correlation between VIX and SPY and factor portfolios from 29th 

January 1993 to 31st December 2018. The excess return on the market has the highest 

negative correlation with VIX (-0.726) and the second strongest negative correlation is 

between SPY and VIX (-0.718). These results are not surprising since they support the 

results of studies such as Fleming, Ostdiek and Whaley (1995), Giot (2005), Hibbert, 

Daigler and Dupoyet (2008) and Whaley (2009) that have documented VIX to be highly 

negatively correlated with equity market returns. The results also show that HML, RMW, 

CMA and MOM factor portfolios have been mostly positively correlated and SMB 

marginally negatively correlated with VIX.  

 

Table 3: Correlations between VIX and different benchmarks from 29th January 1993 to 

31st December 2018. 

 

Benchmark Correlation with VIX 

SPY -0.718 

Mkt-Rf -0.726 

SMB -0.031 

HML 0.049 

RMW 0.244 

CMA 0.209 

MOM 0.029 

 

 

More detailed correlation results compared to the previous table can be seen in table 4 as 

it shows what the correlations between VIX and SPY and factor portfolios have been 

yearly from 29th January 1993 to 31st December 2018. Although most of the correlations 

have remained more or less the same over the years, there has been a clear change in the 

correlations of HML and SMB factors with VIX in the recent history. For the last ten 

years VIX has been eight out of ten years negatively correlated with SMB and seven out 

of ten years negatively correlated with HML. These results would suggest that investors 

prefer to hold large company stocks rather than small company stocks when VIX 

increases. In addition, investors seem more willing to hold growth stocks rather than value 
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stocks when VIX increases. The negative correlation between VIX and HML has been 

less significant than the negative correlation between VIX and SMB in the recent years 

and it is also notable that for the last five years HML has been more positively than 

negatively correlated with VIX. In addition, the statistics for SMB and HML suggest that 

their correlations with VIX tend to be positive during low market uncertainty and vice 

versa since during and around the financial crisis period both factors became negatively 

correlated with VIX. 

 

Table 4: Yearly correlations between VIX and different benchmarks from 29th January 

1993 to 31st December 2018. 

 

Year SPY  Mkt-Rf SMB HML RMW CMA MOM 

1993 -0.50 -0.54 0.08 0.14 -0.07 0.21 -0.25 

1994 -0.69 -0.74 0.20 0.25 0.12 0.32 -0.28 

1995 -0.45 -0.49 0.00 0.26 0.19 0.21 -0.19 

1996 -0.69 -0.70 0.24 0.48 0.10 0.37 -0.33 

1997 -0.69 -0.72 0.42 0.48 -0.16 0.38 -0.49 

1998 -0.81 -0.82 0.33 0.58 0.18 0.53 -0.14 

1999 -0.76 -0.79 0.56 0.54 0.14 0.50 -0.39 

2000 -0.72 -0.77 0.12 0.54 0.42 0.52 -0.32 

2001 -0.81 -0.82 0.22 0.51 0.48 0.56 0.55 

2002 -0.80 -0.82 0.38 0.28 0.35 0.16 0.52 

2003 -0.63 -0.65 0.04 0.10 0.40 -0.24 0.11 

2004 -0.80 -0.77 -0.42 0.08 0.44 -0.39 -0.40 

2005 -0.84 -0.82 -0.37 0.15 -0.02 0.15 -0.31 

2006 -0.85 -0.82 -0.48 0.22 0.09 0.16 -0.47 

2007 -0.88 -0.85 -0.20 -0.03 -0.15 0.16 -0.18 

2008 -0.85 -0.84 0.10 -0.31 0.21 0.30 0.53 

2009 -0.76 -0.75 -0.27 -0.57 0.43 0.15 0.50 

2010 -0.85 -0.84 -0.39 -0.60 0.49 -0.50 -0.63 

2011 -0.87 -0.86 -0.52 -0.27 0.67 -0.13 -0.02 

2012 -0.76 -0.76 -0.27 -0.13 0.33 0.19 0.35 

2013 -0.83 -0.83 -0.21 -0.26 0.49 -0.06 -0.40 

2014 -0.85 -0.85 -0.16 0.19 0.31 0.28 -0.33 

2015 -0.88 -0.88 0.10 0.08 0.12 0.28 0.02 

2016 -0.81 -0.81 -0.29 -0.06 0.30 0.11 0.28 

2017 -0.74 -0.74 -0.29 -0.01 0.18 0.15 -0.37 

2018 -0.81 -0.81 0.06 0.24 0.23 0.29 -0.35 
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The results of table 4 mostly support the flight-to-quality, or flight-to-safety, phenomenon 

documented by studies such as Abel (1988), Barsky (1989) and Durand, Junker and 

Szimayer (2010) where investors modify their portfolios towards less volatile and more 

quality assets during difficult economic times. According to the statistics, investors prefer 

larger and more conservative stocks with higher operating profitability when risk 

increases. The HML statistics support the findings of Peltomäki and Äijö (2015) that 

HML becomes negatively correlated with VIX during financial crises: the major negative 

observations occur during and few years after the financial crisis, that started in 2007 and 

ended in 2009. Thus, it seems that the correlation between VIX and HML is normally 

positive but becomes negative under times of severe market turmoil such as financial 

crises. Novy-Marx (2014) shows in his research that value investing does not necessarily 

mean the same as investing in quality and it can often be the exact opposite as quality 

tends to attain best results as conventional value experiences a significant decline. While 

conventional value strategies concentrate on acquiring securities at discount prices, 

strategies based on quality focus on investing in exceptionally productive assets. In other 

words, attention to quality, which according to Novy-Marx is measured foremost by gross 

profitability, helps traditional value investors make the crucial distinction between 

undervalued bargain stocks and so-called value traps that are cheap for good reasons. 

Therefore, the HML factor correlation results support the flight-to-quality effect as well. 

 

The RMW, CMA and MOM factors have been quite randomly correlated with VIX 

throughout the whole sample period although RMW and CMA have mostly been 

positively and MOM negatively correlated with VIX. RMW has only been four times 

negatively correlated with VIX and even then, the highest negative correlation has been 

only -0.16 in 1997 while the highest positive correlation has been 0.67 in 2011. CMA has 

only been five times negatively correlated with VIX but the highest negative correlation 

(-0.50) in 2010 has been much more significant compared to the RMW factor. The highest 

positive correlation between CMA and VIX has been 0.56 in 2001. The overall 

interpretation of the RMW and CMA results is that investors tend to prefer conservative 

stocks with higher operating profitability when market uncertainty and risk increases 

which supports the flight-to-quality theory. The MOM factor has been mostly negatively 

correlated with VIX although it has been eight times positively correlated with VIX during 

the sample period. Most notably, from 2001 to 2002 and from 2008 to 2009, MOM had a 
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positive correlation of 0.50 or above with VIX. The highest negative correlation between 

MOM and VIX was -0.49 in 1997  The yearly MOM correlation results suggest that a 

momentum strategy generates better returns when volatility is low although the MOM 

factor results are not as coherent as the results for SPY and the  Fama-French 5 factors.  

 

Another notable finding from the results in table 4 is that the negative correlation between 

VIX and S&P 500 returns has become significantly stronger in recent years especially 

compared to what it was in the early 1990s. For example, the average correlation between 

VIX and SPY was approximately -0.60 for the five first years of the sample period from 

1993 to 1997 whereas for the last five years of the sample period from 2014 to 2018 the 

average correlation was approximately -0.82. Guo and Wohar (2006) provide evidence 

that market volatility changes over time by discovering in their study that there have been 

significant historical shifts in the average level of implied volatility. These shifts can be 

divided into three distinct regimes or two structural breaks for VIX: pre-1992, 1992–1997 

and post-1997. In addition, Guo and Wohar find that the mean volatility was lowest during 

the period of 1992 to 1997. Since Giot (2005) mostly only examines the period of 1990s 

in his study whereas the data used in this thesis expands till the end of 2018, the results of 

this thesis might differ significantly from the findings of Giot.  

 

8.1. VIX & SPY  

 

Table 5 presents the outcomes of buying SPY with different VIX ranks and holding it for 

different periods. The first column represents the VIX rolling ranks whereas the second 

column shows the amount of VIX values received from the 500-day rolling ranking 

method for every specific rank. Most notably, the highest and lowest ranks have the most 

observations as the number of observations for rank 1 is 841 and 665 for rank 20. The 

middle ranks, on the other hand, have all slightly above 200 observations. The average 

returns for different holding periods are represented by 1d, 5d, 20d and 60d. To consider 

autocorrelation and heteroscedasticity, all standard errors are Newey-West standard 

errors. Both the average returns and standard errors are presented in percentages. Lastly, 

the t-statistics display the notability of the results for the average returns and whether they 

are statistically significantly dissimilar from zero.  
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Table 5: SPY returns with different VIX ranks on different holding periods. 

 

 

*** means significance at 1% level, ** at 5% level and * at 10% level.  
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The results of table 5 show that only the highest VIX rank leads to positive returns at 1% 

significance level regardless of the holding period. In addition, the returns for the highest 

VIX rank clearly grow as the holding period is expanded. These results support the 

findings of Giot (2005) that very high VIX levels consistently result in positive returns. 

However, the findings do not show any significant results of low levels of VIX always 

leading into negative returns and therefore differ from the results of Giot for this part. In 

fact, all statistically significant return results are positive including the 20- and 60-day 

returns for lower VIX ranks. Another notable difference with results of Giot is that 

moderate VIX ranks lead to statistically significant positive returns. Especially ranks 7 

and 10 lead to positive returns with every holding period at 5% significance level. These 

results, however, are mostly explained by the financial crisis since between the end of 

2007 and beginning of 2009 all VIX ranks are over 10 and all returns are highly negative. 

This also partly explains the positive returns of the lowest VIX levels. Table 6 below 

presents the corresponding average SPY returns with different holding periods over the 

period of 29th January 1993 to 31st December 2018. The average returns are displayed in 

percentages.  

 

Table 6: Average returns for SPY with different holding periods. 

 

Holding period Average Return 

1d 0.034 

5d 0.168 

20d 0.690 

60d 2.110 

 

 

By merging the results of table 5 and table 6 we can examine more closely in table 7 the 

observation results which show what percentage of the observations are above the average 

return for each rank with different holding periods. Although table 7 provides more 

detailed information about the observations, it needs to be noted that the table only shows 

the amount of observations that are above the average returns and not the actual positive 

or negative differences in returns for different ranks with different holding periods. 

However, table 7 does support the findings from table 5 that the highest VIX levels result 

in positive returns with every holding period. The longer the holding period is the higher 
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the percentage of observations above average returns is: for the highest VIX rank the 

percentage for the 1-day holding period is 57% whereas for the 5- and 20-day holding 

periods it is 63% and for the 60-day holding period as much as 70% of the observations 

are above the average return. Again, the moderate levels of VIX have distinctly more 

positive observations, but as stated before, this is mostly due to the anomaly in the data 

caused by the financial crisis of 2007 to 2009.  

 

Table 7: Percentage of observations above the average corresponding SPY returns.  

 

 

 

8.2. VIX & Fama-French 5 and momentum factor results 

 

In this chapter, the same methodology is utilized for Fama-French 5 factors as previously 

for SPY on different ranks with different holding periods. Firstly, summary statistics for 

the Fama-French 5 factors and the change in VIX between 29th January 1993 and 31st 

December 2018 are presented. Then, the returns of each factor with different VIX ranks 

Rank # 1d 5d 20d 60d

R01 841 49 % 47 % 48 % 51 %

R02 469 56 % 50 % 52 % 53 %

R03 353 50 % 50 % 52 % 50 %

R04 345 50 % 55 % 61 % 56 %

R05 285 51 % 55 % 51 % 58 %

R06 259 48 % 53 % 63 % 54 %

R07 233 56 % 62 % 64 % 58 %

R08 223 54 % 61 % 59 % 65 %

R09 218 51 % 56 % 59 % 64 %

R10 224 56 % 67 % 63 % 65 %

R11 214 49 % 56 % 57 % 64 %

R12 216 55 % 50 % 56 % 52 %

R13 243 46 % 58 % 58 % 59 %

R14 259 49 % 56 % 62 % 55 %

R15 237 55 % 55 % 65 % 57 %

R16 266 55 % 56 % 67 % 58 %

R17 268 49 % 52 % 56 % 58 %

R18 329 50 % 49 % 48 % 52 %

R19 381 49 % 46 % 47 % 53 %

R20 665 57 % 63 % 63 % 70 %



55 

 

and holding periods are shown and analyzed. Again, for more accurate results, the returns 

are transformed into logarithmic returns and autocorrelation and heteroscedasticity is 

considered by using Newey-West standard errors. 

 

The summary statistics are displayed in percentages in the below table 8. Not surprisingly, 

all the summary statistics are highest for Mkt-Rf while SMB has the lowest risk premium 

of 0.005% on daily basis. For other factors, the premium is 0.010% for HML, 0.015% for 

RMW, 0.012% for CMA and 0.024% for MOM. Another notable finding from the 

summary statistics is that the standard deviation of the daily change of VIX is more than 

6 times the standard deviation of Mkt-Rf and more than 10 times the standard deviation 

of the other Fama-French 5 factors. This reflects strongly the high daily volatility of VIX 

compared to different market returns.  

 

Table 8: Fama-French 5 and momentum factor summary statistics. 

               

  Mkt-Rf SMB HML RMW CMA MOM ∆VIX 

Mean 0.032 0.005 0.010 0.016 0.011 0.024 0.233 

Median 0.060 0.020 0.000 0.010 0.000 0.060 -0.323 

Maximum 11.350 4.490 4.830 4.400 2.530 7.010 115.598 

Minimum -8.950 -4.320 -4.220 -2.920 -5.930 -8.210 -29.573 

Std.dev. 1.134 0.580 0.616 0.470 0.425 0.886 6.839 

 

 

In table 9 are the results for Mkt-Rf with different VIX ranks and holding periods. The 

results are expected to resemble the SPY results that were presented previously in table 

5. The findings are more inconsistent for Mkt-Rf, but still quite like the SPY return results. 

Especially the results for the 60-day holding period provide mostly statistically significant 

results that are in line with the SPY results as lower VIX ranks tend to lead into lower 

returns than the highest VIX ranks: the highest VIX rank results in a return of 2.898% at 

1% significance level whereas the lowest rank has a return of 0.857% at 10% significance 

level. The 5- and 20-day return results, on the other hand, are mainly statistically 

insignificant for the highest and lowest VIX ranks. Unlike the 60-day returns, the 1-day 

returns for the highest VIX rank are negative (-0.454%) and for the lowest VIX rank 

positive (0,239%) at 1% significance level.  
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Table 9: Mkt-Rf returns with different VIX ranks on different holding periods. 

 

 

*** means significance at 1% level, ** at 5% level and * at 10% level.  
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Table 10: SMB returns with different VIX ranks on different holding periods. 

 

 

*** means significance at 1% level, ** at 5% level and * at 10% level.  
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Table 10 presents the results for SMB with different VIX ranks and holding periods which 

are much more interesting from a style rotation perspective considering VIX timing 

possibilities. The results indicate whether investors should prefer small cap or large cap 

stocks with different VIX levels. According to the flight-to-quality phenomenon (Abel 

1988; Barsky 1989; Durand, Junker and Szimayer 2010) introduced earlier, investors tend 

to choose large rather than small stocks when risk increases. Thus, SMB returns should 

be negative for higher VIX ranks. The results support the flight-to-quality effect as 

statistically significant negative returns occur only for the highest VIX rank at least at a 

5% significance level with all holding periods except for the 60-day holding period. In 

addition, the findings suggest that small cap stocks tend to perform well during low 

volatility periods since all statistically significant returns for one or both two lowest VIX 

ranks exhibit only positive returns with all holding periods at least at a 10% significance 

level. The positive returns for lower VIX ranks can be seen most notably with the 60-day 

returns as VIX ranks between 2 to 6 exhibit positive returns that are statistically significant 

at least at a 5% significance level for the longest holding period. 

 

In table 11 are the results for HML with different VIX ranks and holding periods. 

According to Copeland and Copeland (1999), Boscaljon, Filbeck and Zhao (2011) and 

Durand, Lim and Zumwalt (2011) value stocks outperform growth stocks when VIX 

increases. Table 11 results, however, suggest that when VIX is at its highest level, future 

HML returns become negative. These findings support the flight-to-quality phenomenon 

since HML means often the exact opposite of quality (Novy-Marx 2014). The statistics 

show statistically significant negative return results for HML with the highest VIX rank 

for the 60-day and 20-day holding periods at a 1% significance level. Furthermore, rank 

18 shows significant negative returns for the 1-day and 5-day holding periods at a 10% 

significance level. These results, however, do not directly contradict with the previously 

mentioned studies as the correlation between VIX changes and value strategy returns are 

generally positive, but becomes negative during periods of very high market uncertainty. 

In addition, the results show statistically significant positive returns for HML with the two 

lowest VIX ranks for the 5-, 20- and 60-day holding periods at least at a 5% significance 

level. An explanation for the results could be that investors prefer value stocks as market 

uncertainty increases, but when VIX reaches its highest level, growth stocks could be 

oversold and therefore provide better future returns and vice versa.  
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Table 11: HML returns with different VIX ranks on different holding periods. 

 

 

*** means significance at 1% level, ** at 5% level and * at 10% level.  
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Table 12: RMW returns with different VIX ranks on different holding periods. 
 

 

*** means significance at 1% level, ** at 5% level and * at 10% level.  
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The RMW results are shown in table 12. The results indicate that the future returns of 

higher operating profitability firms tend to be higher when VIX is at its highest levels. 

This supports the flight-to-quality theory as higher operating profitability firms are often 

healthier and less risky than firms with lower operating profitability. Furthermore, 

economic financial ratios that measure profitability, such as operating profitability, have 

been among the most popularly applied variables for assessing corporate bankruptcy 

(Altman et al. 1977; Alfaro et al. 2008; Beaver et al. 2012). The statistics show statistically 

significant positive return results for RMW with the two highest VIX ranks for all holding 

periods at least at a 5% significance level. While the lowest VIX ranks also show generally 

positive returns for RMW, they are distinctly lower when compared to the highest VIX 

ranks. The only exceptions are the lowest and the fifth lowest VIX ranks with the 1-day 

holding period since they exhibit statistically significant negative returns at least at a 5% 

significance level.  

 

The final Fama-French 5 factor, CMA, results can be seen in table 13. The results for the 

highest and lowest VIX ranks with the 1-, 5- and 20-day holding periods are mostly 

statistically insignificant and do not show any clear pattern for the returns with different 

VIX levels. However, the results with the 60-day holding period show clearly that the 

correlation of future CMA returns with VIX is mostly positive until the highest VIX levels 

are reached. Thus, the future returns of aggressive high-beta stocks tend to exceed 

conservative low-beta stocks only when VIX reaches its peak levels. The statistics show 

statistically significant negative return results for CMA with the highest VIX rank at a 5% 

significance level and positive returns for the six lowest VIX ranks at least at a 5% 

significance level for the 60-day holding period. In addition, VIX ranks from eight to 

fifteen are statistically significantly positive at least at a 5% significance level for the 60-

day holding period. The CMA results support the findings of Banerjee, Doran and 

Peterson that (2007) higher beta portfolios have a stronger negative correlation with VIX. 

Thus, when VIX is at its extreme levels and starts to revert to its mean, high-beta stocks 

tend increase in value quicker than low-beta stocks. Investors should therefore prefer low-

beta stocks during low and average levels of VIX and lean towards high-beta stocks when 

VIX is at its highest levels.  
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Table 13: CMA returns with different VIX ranks on different holding periods. 

 

 

*** means significance at 1% level, ** at 5% level and * at 10% level.  
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Table 14: MOM returns with different VIX ranks on different holding periods. 

 

 

*** means significance at 1% level, ** at 5% level and * at 10% level.  
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Finally, the MOM factor results are presented in table 14. The first distinct finding from 

the table is that there are many highly statistically significant positive MOM return results 

for the lowest VIX rankings with all holding periods but only one highly statistically 

significant finding with the highest VIX rankings which is within the 60-day holding 

period returns. When the holding period is extended, the more statistically significant the 

results become: for the 20-day holding period the first seven and for the 60-day holding 

period the first twelve VIX ranks show statistically significant positive MOM returns at 

least at a 5% significance level. The t-statistic is very high for the lowest VIX level returns 

with the 60-day holding period and it is even over six for the second VIX rank. 

Furthermore, VIX ranks from 2 to 5 and rank 7 show statistically significant positive 

MOM returns at least at a 5% significance level with the 5-day holding period. 

Concerning the highest VIX ranks, all six highest VIX ranks for the 60-day holding period 

show negative results but only the eighteenth VIX rank shows a statistically significant 

negative return result (-4.732) at a 5% significance level. Overall, the MOM results 

support the findings of Durand, Lim and Zumwalt (2011) as they discover a generally 

positive correlation with VIX and the momentum premium. Furthermore, the results 

support the study by Chordia and Shivakumar (2002) that the momentum effect is solely 

present in expansionary periods of the economy. Thus, the results suggest that the 

momentum strategy produces positive future returns when VIX is at its lowest or average 

levels. However, when VIX reaches its highest levels, negative momentum returns should 

be anticipated.  

 

The Fama-French 5 and momentum factor return results show clear potential in a VIX 

timing strategy in S&P 500 with style rotation as all factors show statistically significant 

future return results with different levels of VIX. Furthermore, especially the highest and 

lowest VIX levels seem to be driving the future returns with most of the factors. The 

overall blunt interpretation of the results is that when VIX reaches its highest levels, 

investors should favour high-beta large cap growth stocks with high operating 

profitability and do the opposite of a momentum strategy. When VIX is at its lowest 

levels, on the other hand, low-beta small cap value stocks incorporated with a momentum 

strategy should exhibit best future returns. To test whether the results remain the same 

especially for the higher VIX ranks when the financial crisis is accounted for, the same 

regressions for the Fama-French 5 and momentum factors and SPY are examined in this 
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study by omitting the period between the beginning of December 2007 and the end of 

March 2009 from the data. The results remain highly similar excluding small variation in 

the returns of the higher ranks. However, the negative HML return results for the higher 

VIX ranks become much weaker as all 20-day return results for the higher ranks are 

statistically insignificant and the 60-day return for the highest rank drops by over one 

percent to -0.744% and is only statistically significant at a 10% significance level. This 

suggests that investing in growth stocks when VIX is at its highest levels is not as 

attractive when the financial crisis period is omitted from the data. For the SMB factor, 

however, the results for the higher ranks become slightly stronger as one of the higher 

ranks, rank 17, for the 60-day returns becomes statistically significant and negative at a 

5% significance level (-1.267). This further supports the results for the 20-day returns that 

negative SMB returns can be expected after high VIX levels.  

 

8.2.1. Style rotation results 

 

Next, the return results for the Fama-French 4 factors and the momentum factor are used 

to examine how well in practice the VIX timing strategy combined with style rotation 

performs. In this empirical analysis, long-short portfolios are formed for SMB, HML, 

RMW, CMA and MOM. It needs to be emphasized, that the factor portfolios are not 

traditional long-short portfolios since only one position (long, short or no position) is 

taken at a time during the sample period. The trading strategy of each factor portfolio is 

evaluated individually based on the previously presented factor results so that certain 

levels of VIX are interpreted as signals for buying or shorting the factors. To avoid 

coinciding holding periods, only 1-day holding period returns are used in the style rotation 

strategy.  

 

For the SMB portfolio, VIX ranks 1 to 5 are signals for choosing a long position in SMB 

and VIX ranks 16 to 20 are signals for selecting a short position in SMB. The same 

strategy is used for the HML, CMA and MOM portfolios. For the RMW portfolio, on the 

other hand, VIX ranks 16 to 20 are signals for taking a long position in RMW and VIX 

ranks 1 to 5 are signals for taking a short position in RMW. Below are the formulas for 

each factor where “l” indicates long position and “s” short position.  
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(15)              SMB𝑃  =  lSMB𝐿𝑂𝑊 +  sSMB𝐻𝐼𝐺𝐻  

 

 

(16)              HML𝑃  =  lHML𝐿𝑂𝑊 +  sHML𝐻𝐼𝐺𝐻 

 

 

(17)              RMW𝑃  =  lRMW𝐻𝐼𝐺𝐻 +  sRMW𝐿𝑂𝑊  

 

 

(18)              CMA𝑃  =  lCMA𝐿𝑂𝑊 + sCMA𝐻𝐼𝐺𝐻  

 

 

(19)              MOM𝑃  =  lMOM𝐿𝑂𝑊 +  sMOM𝐻𝐼𝐺𝐻  

 

 

The style rotation trading strategy results are presented in table 15. The first column 

shows the breakdown of all the factor portfolios so that for each factor the first two 

portfolios are the sub-portfolios and the third and bolded portfolio represents the overall 

results of the trading strategy. The average daily returns for all factor portfolios and their 

sub-portfolios are presented in the second column. Even if the average return of one of 

the sub-portfolios is negative, it might eventually be positive for the overall long-short 

portfolio depending on whether that component is sold short or bought long. The third 

column depicts the total amount of observations and the fourth column the total returns 

for the sub-portfolios and the long-short portfolios which are presented in percentages. 

For all the factors, the trading strategy covers 4202 days of 6528 days so that between 

VIX ranks 6 to 15 no position is selected in the factor portfolios. In other words, a long 

or short position is chosen throughout the sample period approximately on 64% of the 

trading days. It needs to be highlighted that this type of investment approach does not 

certainly create high trading costs since VIX usually remains several consecutive days 

between its extreme ranks and therefore an investor would not have to buy or sell his or 

her position every day. Finally, in the sixth column, the excess return of the long-short 

trading strategy is shown. This is the most essential column of the table since it shows 

whether the long-short trading strategies have out- or underperformed the conventional 

returns of the Fama-French 4 and momentum factors. The conventional factor returns are 

the sums of the 1-day returns for the whole sample period. 
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Table 15: Style rotation results. 
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The results of table 15 show that two out of five strategies outperform their corresponding 

conventional portfolios. The SMBP  portfolio results are the most interesting since the 

long-short portfolio outperforms the conventional SMB portfolio by 161.22%. The sub-

portfolios of the strategy perform almost equally well and generate together a return of 

183.02% which is over nine times higher than the return of the conventional SMB 

portfolio (21.80%). Based on these results, investing in large cap stocks when VIX is at 

its highest levels and vice versa is highly more profitable than investing in a conventional 

SMB portfolio. The second portfolio that outperforms its corresponding conventional 

portfolio is the RMWP  portfolio which generates an excess return of 85.13%. 

Approximately two thirds of the long-short portfolio’s returns are generated by the 

RMWHIGH sub-portfolio indicating that the trading strategy is most profitable when VIX 

is at its highest levels. According to these results, investing in firms with higher operating 

profitability when VIX is at its highest levels and vice versa generates almost twice better 

returns than investing in a conventional RMW portfolio.  

 

The results for the HMLP, CMAP and MOMP portfolios, on the other hand, suggest that a 

VIX timing strategy does not work with the HML, CMA or MOM factors. The CMAP 

portfolio has the worst performance as its excess return is -109.78%. Especially the 

CMAHIGH  sub-portfolio has a poor performance as it generates a return of -46.94% 

indicating that taking advantage of the highest levels of VIX by shorting the CMA factor 

is very unprofitable. In addition, the CMALOW generates only a profit of 3.96% meaning 

that low VIX levels are not either good investment opportunities with the CMA factor. 

The HMLP and MOMP portfolios, on the other hand, generate quite good profits with the 

lowest VIX ranks but also fail to perform well when VIX is at its highest levels. As 

mentioned earlier in this study, these are quite expected results since the HML and MOM 

factors have been shown to exhibit generally positive returns with almost all VIX levels 

and negative returns only when VIX is at its most extreme high levels. Both he HMLHIGH 

and the MOMHIGH sub-portfolio exhibit negative returns: -8.74% for the HMLHIGH and -

35.17% for the MOMHIGH  sub-portfolio. The overall return of the HMLP  portfolio 

underperforms the conventional HML portfolio by 42.05% while the MOMP  portfolio 

underperforms its corresponding conventional MOM portfolio by 50.29%. 
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Altogether, the SMBP and RMWP portfolio results are rather innovative and show that 

there is indeed potential in a style rotation strategy with different levels of VIX. When 

VIX is at its highest levels, investors should prefer investing in firms with higher operating 

profitability and large cap stocks and vice versa to generate significant excess future 

returns for their portfolios. The results from table 10 and table 12 also support the style 

rotation results. In addition, the findings from table 15 confirm that a style rotation 

strategy with different VIX levels does not work for the HMLP , CMAP  and MOMP 

portfolios although the initial factor return results with different VIX ranks on different 

holding periods were promising especially for the HML and CMA factors.  
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9. CONCLUSIONS 

 

This study examines the timing possibilities with VIX in the S&P 500 stock index by 

using style rotation with the Fama-French 5 factors and momentum factor. Firstly, the 

performance of positions chosen in S&P 500, Fama-French 5-factors and momentum 

factor with different levels of VIX and holding periods is investigated. The key method 

in this thesis for creating relative ranks for different levels of VIX is a 500-day rolling 

ranking method inspired by Giot (2005). Secondly, based on the Fama-French 4 and 

momentum return results, long-short portfolios are created for each factor to examine how 

well in practice the VIX timing strategy combined with style rotation performs.  

 

The results of this thesis side with multiple studies such as Giot (2005), Banerjee, Doran 

and Peterson (2007) and Whaley (2009) that the correlation between VIX and S&P 500 

is strongly negative. In addition, the historical correlations presented in this study show 

that the interrelationship between VIX and S&P 500 is continuously becoming even more 

negative as time goes by and has even been close to -0.9 in the recent years. The results 

are also in line with studies such as Giot (2005) and Banerjee, Doran and Peterson (2007) 

that the highest respective VIX levels consistently result in positive future stock returns 

in S&P 500 no matter what the holding period is which also confirms the first hypothesis 

of this paper. However, the results do not advocate the results by Giot (2005) that negative 

future returns consistently follow after VIX reaches its lowest levels.  

 

The most major finding of this paper is that the size and operating profitability premiums 

are strongly affected by the VIX levels and can be used in profitable style rotation 

strategies with VIX timing. Especially the long-short SMB portfolio shows very high 

excess returns when compared to a conventional SMB portfolio. In addition, the sub-

portfolios of the SMB long-short portfolio perform almost equally well indicating that a 

style rotation strategy with SMB is well-balanced: large cap stocks generate as good 

returns with high levels of VIX as small cap stocks with low levels of VIX. The long-

short RMW portfolio also clearly outperforms its corresponding conventional portfolio, 

although not as well as the long-short SMB portfolio. However, the long-short RMW 

portfolio is not as balanced as the long-short SMB portfolio as two thirds of its returns are 

generated when VIX is at its highest levels. Thus, higher operating profitability stocks 
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generate much better returns with high levels of VIX than low operating profitability 

stocks with low levels of VIX.  

 

The results for the other factors show that also the value, investment pattern and 

momentum factors exhibit different future returns with different levels of VIX which 

confirms the second hypothesis of this thesis. However, the style rotation trading strategy 

results show that they cannot be used effectively in a VIX timing strategy like the size 

and operating profitability premiums. The results for the value factor support the findings 

of Peltomäki and Äijö (2015) by showing that the correlation between VIX changes and 

HML returns is generally positive and becomes negative only during periods of very high 

market uncertainty: the 20-day and 60-day future returns for the value factor show 

statistically significant negative returns at least at a 5% significance level only for the 

highest level of VIX. Thus, taking advantage of the highest levels of VIX in an HML-

driven style rotation trading strategy would not be possible in practice due to high trading 

costs. The momentum factor exhibits very similar results compared to the HML factor 

results as the MOM returns with different holding periods and VIX ranks are generally 

positive with almost all VIX levels and negative only when VIX is at its most extreme 

high levels. The long-short momentum portfolio returns for the lower levels of VIX are 

quite good but ultimately overshadowed by the negative returns for the higher levels of 

VIX just like with the long-short HML portfolio. The initial CMA return results with 

different holding periods and VIX ranks are promising as they show that aggressive stocks 

tend to outperform conservative stocks when VIX is at its highest levels and vice versa. 

However, the style rotation trading strategy results reveal that utilizing the extreme levels 

of VIX with the CMA factor does not work well in practice as the CMA long-short 

portfolio greatly underperforms the conventional CMA portfolio.  

 

Overall, this thesis shows that the relative levels of VIX combined with style rotation can 

be used by investors in an equity timing strategy to gain considerable excess returns in 

the S&P 500 index. The results indicate that the highest levels of VIX always lead to 

positive future returns in S&P 500 and should therefore be considered especially in 

portfolio management by more passive investors. This study contributes to the previous 

literature by examining the effects of VIX levels on the future returns of the Fama-French 

5 factors and momentum factor and discovers that the SMB and RMW factors can in fact 
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be utilized for style rotation in a VIX timing strategy in the S&P 500 index. Thus, more 

active investors can use the highest and lowest levels of VIX to choose whether to buy 

small cap or large cap stocks or high or low operating profitability stocks to get superior 

excess returns compared to the conventional SMB and RMW factor portfolio returns. All 

findings considered, relative VIX levels and can be used in profitable style rotation timing 

strategies in S&P 500.  
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