Vaasan yliopisto Op_en
UNIVERSITY OF VAASA SCIence

This is a self-archived — parallel published version of this article in the
publication archive of the University of Vaasa. It might differ from the original.

Fast fixed-point bicubic interpolation algorithm
on FPGA

Author(s):

Title:
Year:

Version:

Copyright

Koljonen, Janne; Bochko, Vladimir A.; Lauronen Sami J.;
Alander, Jarmo T.

Fast fixed-point bicubic interpolation algorithm on FPGA
2019
Accepted manuscript

©2019 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Please cite the original version:

Koljonen, J., Bochko, V.A., Lauronen S.J., & Alander, J.T.,
(2019). Fast fixed-point bicubic interpolation algorithm on
FPGA. In: IEEE Nordic Circuits and Systems Conference
(NORCAS): NORCHIP and International Symposium of
System-on-Chip (SoC), Helsinki, Finland (pp. 1—7). Institute of
Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/NORCHIP.2019.8906933

Fast Fixed-point Bicubic Interpolation Algorithm on
FPGA

1** Janne Koljonen
School of Technology and Innovations
University of Vaasa
Vaasa, Finland
https://orcid.org/0000-0001-5834-4437

4" Jarmo T. Alander
School of Technology and Innovations
University of Vaasa
Vaasa, Finland
https://orcid.org/0000-0002-7161-8081

Abstract—We propose a fast fixed-point algorithm for bicubic
interpolation on FPGA. Bicubic interpolation algorithms on
FPGA are mainly used in image processing systems and based
on floating-peint calculation. In these systems, calculations are
synchronized with the frame rate and reduction of computation
time is achieved designing a particular hardware architecture.
Our system is intended to work with images or other similar
applications like industrial control systems. The fast and energy
efficient calculation is achieved using a fixed-point implementa-
tion. We obtained a maximum frequency of 27.26 MHz, a relative
quantization error of 0.36% with the fractional number of bits
being 7, logic utilization of 8%, and about 30% of energy saving
in comparison with a C-program on the embedded HPS for
the popular Matlab test function Peaks(25,25) data on SoCKkit
development kit (Terasic), chip: Cyclone V, SCSXFC6D6F31CS8.
The experiments confirm the feasibility of the proposed method.

Index Terms—control, fixed-point algorithm, bicubic interpo-
lation, FPGA, energy efficiency

I. INTRODUCTION

Interpolation is widely used in different areas of engineering
and science particularly for image generation and analysis
In remote sensing, computer graphics, medicine, and digital
terrain modelling [1-4]. The most popular methods in digital
image scaling are nearest neighbor and bilinear interpolation.
However, nearest neighbor interpolation has stairstepping on
the edges of the objects while bilinear interpolation produces
blurring [3]. Bicubic interpolation is in turn slightly more
computationally complicated but has a better image quality.

FPGA based real-time super-resolution is introduced in (5]
where the FPGA based system reduces motion blur in images.
The fisheye lens distortion correction system based on FPGA
with a pipeline architecture is proposed in [6]. The FPGA-
based fuzzy logic system is utilized in image scaling [7]. The
architecture is based on pipelining and parallel processing to
optimize computation time. A bilinear interpolation method for

This study was supported by the Academy of Finland (project
SA/SICSURFIS). 978-1-7281-2769-9/19/$31.00 ©2019 IEEE

2™ Vladimir A. Bochko
School of Technology and Innovations
University of Vaasa
Vaasa, Finland
https://orcid.org/0000-0002-3505-3677

3" Sami J. Lauronen
School of Technology and Innovations
University of Vaasa
Vaasa, Finland
https://orcid.org/0000-0002-3767-045X

FPGA implementation has been used to improve the quality
of image scaling [8]. For preprocessing purposes sharpening
and smoothing filters are adopted followed by a bilinear
interpolator. The adaptive image resizing algorithm is verified
in FPGA [9]. The architecture consists of several stage parallel
pipelines.

Implementations of bicubic interpolation using FPGA for
image scaling [10, 11] usually use floating-point arithmetic.
In [11], the floating-point multiplication is replaced by a look-
up table method and convolution designed using a library of
parameterized modules. These methods deal with a batch of
data, i.e. all image frame pixels are available concurrently, and
the purpose is to provide real-time video-processing at image
frame rate.

Our task is different, as the goal includes also a high-
speed industrial control applications, where fast-rate data
sequentially arrive from sensors and the interpolated control
data has to be sent to the actuators within low latency delay
that can only be achieved using FPGA or ASIC. Our control
system is similar to the look-up table implementations of
fuzzy controllers, e.g. [12]. In real-time applications, it is
computationally efficient to implement the nonlinear control
surface as a (possibly multi-dimensional) look-up table, which
is obtained by spatial sampling from the continuous control
surface. The control output samples can use either floating or
fixed-point representation. Subsequently, the interpolated con-
trol outputs between the sample grid points can be computed
in runtime.

In contrast to the studies presented in [10, 11] we implement
the interpolation algorithm using fixed-point arithmetic. The
objective is to obtain accurate data quantization working with
the same rate as the data arrives. Obviously, the use of fixed-
point numbers introduces round-off errors at several phases:
quantization of measurements, sampling, and in internal calcu-
lations. The benefit of fixed-point algorithms include reduced
complexity of the logic and, subsequently, a higher operating
frequency.

0,0 i
£) X
| [Fiagr |Fiq1 'f|+1,1-1'f|+z,,_1'§
|
1 | |
2 fi) |fij | |Fieny (Fiezi
a| |y
$ - -
flajer figrr Firnjralfiezgel
firj+2 Fipe2 .fl+1,j+2‘:ﬁ+2,j+2—§

yY

Fig. 1. Notations used in bicubic interpolation. Note the convention of image
processing for y-axis towards line.

As for fixed-point implementations there are several com-
petitive optimization objectives. On one hand, the quantization
error should be minimized. On the other hand, the resource
use and latency time should be minimized and the throughput
maximized. One solution is to find a suitable wordlength
to serve all the objectives reasonably well. Additionally, the
internal arithmetic can be implemented smartly: avoiding com-
plex arithmetic and using, e.g., additions and shift operations
instead, and using the potential of VHDL language to define
custom data types with only the required number of bits can
result in significant savings in resources. This makes the fixed-
point calculation a demanding problem when implementing in
FPGA.

Reference [13] defines two main methods to optimize the
wordlength as for fixed-point computations. First, the fixed-
point implementation can be compared to the equivalent
floating-point system by simulation. Second, several analytical
approaches can be used. We use the simulation approach.

II. BiCcUBIC INTERPOLATION

The objective is to interpolate a two-dimensional function
F(z,y) defined on a regular rectangular grid (Fig. 1). The
function values are known in the intersection points (f; ;).

The point of interpolation (z,y) is a function value down
and to the right of a grid point (f;;) with a deviation
(At., At,) from the previous grid points. For interpolating one
point, 4 x 4 = 16 grid points plus the deviations (At;, At,)
are needed. This is a good example how we can trade between
speed and resources with FPGAs: we can either compute the
i, At and j, At, in parallel to gain speed or sequentially
in series to minimize hardware. In any case we can define
a hardware module that does it for one dimension (using a
fixed-point approach). Bicubic spline interpolation requires the
solution of a linear system, described in [14], for each grid
cell. An interpolator with similar properties can be obtained

by applying a convolution with the following kerel in both
dimensions:

(a+2)|z|>*—(a+3)|z[2+1 for |z|<1,
W(z)=1 a|z|®—5a|z|?+8a|z|—4a for |z|<2, (D)
0 otherwise,

where a is usually set to —0.5 or —0.75. Note that W (0) = 1
and W (n) = 0 for all nonzero integers n. Keys, who showed
third-order convergence with respect to the sampling interval
of the original function, proposed this method [14].

If we use the matrix notation for the common case

a = —0.5, we can express the equation as follows:
0 2 0 07 [f-1
1 -1 0 1 0 Jo
T 2 3
p(t) = 3 1 At a2 A 5 4 nl»®@
-1 3 =3 1 fa

for At € [0, 1) for one dimension. Note that for 1-dimensional
cubic convolution interpolation requires four sample points.
For each inquiry two samples are located to the left and two
to the right from the point of interest. These points are indexed
from —1 to 2 in this paper. The distance from the point indexed
with O to the inquiry point is denoted by At here.

For a point of interest in a 2D grid, interpolation is first
applied four times in z and then once in y direction:

b_1=p(Ats, fim1,j—1)f - 1), FGi+1,i-1) Ji+2,5-1))
bo=p(Atz, fi-1,5)f .5 fi+1,5)Fr2,5)s

bi=p(Ate, fii-1,5+1):fG,5+1) fr1,541) fir2.4n)s 3
ba=p(Atz,fi1,542).fG 512 farrire)farzii),
p(y,2)=p(Aty,b_1,b0,b1,b2),

The size of the data matrix f is denoted by s; x s,. To
enable interpolation also at the edge points we extend the
data to the top and left margins by repeating data from the
top row and the left column, respectively, and to right and
bottom margins by repeating twice the right column and the
bottom row, respectively. Thus, the size of the extended matrix
is Sze X Sye = (85 + 3)(sy + 3).

III. FIXED-POINT NUMBERS AND ARITHMETIC

We use Q... numbers to define the m integer and n
fractional bits for the fixed-point approach. The fractional part
determines the interpolation and quantization resolutions, i.e.
the interval between two consecutive numbers or interpolated
points. This is defined as |At;—Atg_1| = 27™. In general, the
data range determines the number of integer bits needed. In
particular purposes m is as follows: The value m is determined
using the absolute maximum value of the given data set f.

In addition, from (2) we note that At < 1, and the absolute
values of the matrix entries are integers in the range [0, 5].
Multiplication by 2 and 4 can be replaced by left shifts. Due
to the fact that entries 3 and 5 can be decomposed to (2 + 1)
and (4 + 1), respectively, multiplication by 3 and 5 can be
replaced by left shifts and one summation.

Finally, we assume that value m is defined by a number
of bits representing the absolute maximum value of f shifted

HPS

==
(AR [J FPGA

Fig. 2. The HPS-FPGA interaction scheme. The HPS does data preprocessing,
testing and reporting. The fixed-point algorithm is implemented in FPGA.

left twice. The given data is positive and negative. Therefore,
signed decimal numbers are used and, thus, a sign bit is also
needed. The wordlength for f is m +n + 1.

The corresponding wordlengths for x and y are m, +n+1
and m, +n + 1, where m; and m, are the least number of
bits needed to represent the data matrix f size sz, and sy,
respectively.

A. Fixed-point Implementation in VHDL

We could use a fixed-point package for modeling [15]. How-
ever, this package may not be available for electronic design
automation tools needed for programming design functionality
in FPGA. In addition, bicubic interpolation includes arithmetic
operations avoiding multiplication, division and other time and
resource consuming operations, which simplify the design for
fixed-point calculations. Therefore, we model the fixed-point
numbers and arithmetic directly in VHDL.

‘We use both simulation and a Hard Processor System (HPS-
FPGA) scheme in the implementation and testing (Fig. 2).
The software of the HPS performs preprocessing of input data
needed for the fixed-point algorithm. We use Python program
for preprocessing the data. The original data have floating-
point coordinates in the range [—a,a] for « and [—b,b] for
y. The HPS translate these values by adding a + 1 and b +
1 to z and y, respectively, to make them positive values in
the range [1,s,] and [1,s,] that are, subsequently, suitable
for separating into integer and fractional parts. In addition,
we multiply their values by 2™ to convert them to fixed-point
numbers. After preprocessing, input data (z,y) are sent to the
FPGA. The output of the FPGA is an interpolated value read
back to the HPS. The HPS divides the interpolated values
by 2" to convert them back the floating-point values. We do
not delegate preprocessing to FPGA since the focus of the
study is on interpolation and the original data are not necessary
floating-point values.

We implemented the fixed-point algorithm in VHDL for the
FPGA. The dataflow for the bicubic interpolation includes: ex-
tractor of integer and fractional part, convolution, dot product
and output register (in Fig. 3).

For VHDL the input is {z,y) (Fig. 3). First, component
Bicubic interpolation calculates the integer and fractional parts
of the input. The integer part gives indexes (4,j) of matrix
f. The matrix f is implemented as a VHDL 2D array in a
package (fixed control surface). The fractional part defines
(Aty, Aty). This information is used to calculate convolution
according to (3). We have 4 (b_1-b3) of 5 convolution oper-
ations implementing in parallel. Component Convolution cal-
culates the product between the matrix and vector containing
f values of (2) to obtain a weighted composition of values
f and, then, passes the result to component Dot product to

L
Y Bicubic interpolation)
Extractor of interger _»| Dot
and fractional part, |« Convoluton product
output result
|
Clock [r=— - = i
— Register l

e :

i Interpolated

value

Fig. 3. The dataflow for bicubic interpolation.

calculate the dot product of the weighted composition and the
vector containing At and its powered values.

When the weighted composition is determined, all multipli-
cations are replaced by summations and shifting to accelerate
the calculation. The other arithmetical operations are as fol-
lows:

e VHDL package numeric_std provides

tion/subtraction of signed integer numbers [16].

« Multiplication/division by a factor 2%, where k = 1,2,
is replaced by a bit shift.

o The left shift for the negative and positive numbers was
implemented keeping the sign bit, shifting all bits to the
left, removing the MSB and adding 0 to the LSB.

o The right shift for the positive numbers was implemented
keeping the signed bit, shifting all bits to the right,
inserting 0 to the MSB and removing the LSB. The
right shift for the negative numbers was implemented
keeping the signed bit, shifting all bits to the right,
inserting 1 to the MSB and removing the LSB. The
difference in shifting is because the negative numbers
have a complement form.

o VHDL package numeric_std provides multiplication of
signed decimal numbers in component Dot product. The
result of multiplication if both operands have the same
format is: two (repeated) sign bits, 2m integer bits, 2n
fractional bits. We denote the length of the word without
the sign bits with four parts: m/+m"” +n'+n” (m’ = m”
and n’ = n”). To convert the result to the format of the
operand, one has to keep one (any) sign bit, and m” +n’
bits.

We do not use hardware multipliers, because we use variable
wordlength. This gives more flexibility to scale up the design
for any number of bits. Shifting is simply by array indices,
therefore DSP logic is not needed.

summa-

B. Fixed-point Implementation in Matlab

For verification, we implemented floating-point and fixed-
point algorithm variants in Matlab. For fixed-point we use the
same (), , numbers and the Matlab integer data type with
32 bits (int32). The arithmetic operations for the fixed-point
algorithm are as follows:

¢ Matlab supports summation and subtraction of the integer

numbers.

Package for global declarations (Types.vhd)

Top-level VHDL (SystemOnChip.vhd)
QSYS hard processor system
{S0C_QSYS.qsys)
-
£
b
e
Q Custom FPGA
= e ™ logic:
5 2 (concurrent
Ted 4 assignements,
&z g z . | processes,
g fh o o ;omponent
'33 3 3 | instances, etc)
ARM SRE =
E e =]
processor | & >2: < ° 3
2Z9 e o
>
[) : ©
290, o =
R =] 3
> o <
Ln=2a 1L
Q
=
(%)
=
=
<

Fig. 4. Data flow between ARM and FPGA. Notations: Avalon Memory
Mapped Slave (AMMS), System on Chip (SoC), and System Integration Tool
(QSYS).

» Multiplication of variables by factors or variables was
made by converting the decimal numbers to the integer
64-bit format and then the result was multiplied by 27,
respectively, and converted back ta the 32-bit format.

e Matlab provides division by a factor of 2.

IV. SYNTHESIS USING HPS AND FPGA

For synthesis we use the TerasicAltera SoCKit develop-
ment board combining HPS (800 MHz, A Dual-Core ARM
Cortex™ - A9 MPCoreTM Processor) and FPGA (Cyclone
V, SCSXFC6D6F31C6). This Section includes the description
of the interface between HPS and FPGA, method to establish a
communication between HPS and FPGA, and the C language
program to access FPGA.

A. Interface between HPS and FPGA

The interface establishes a communication between ARM
and FPGA. The dataflow diagram of the interface is given in
Fig. 4. The interface consists of: the ARM processor (HPS),
where software code is written, compiled, and run, Avalon
Memory Mapped Slave (AMMS) interfaces from HPS to
FPGA and FPGA to HPS. Avalon buses are Intel’s denitions
for a few general purpose buses. In this study, they are used
to synchronously transfer data from HPS to FPGA and from
FPGA to HPS. As both buses are slave buses, it implies that
HPS is the master, i.c., data is transferred only when the
software-side requests so.

The ARM processor and the AMMS buses are instanti-
ated and integrated in QSYS (Intel). Inside QSYS systems,
Avalon buses are usually used in communication. Intel also
provides the possibility to use arbitrary buses. These are called
conduits, which may be useful in communication between a
QSYS system and custom FPGA logic that does not support
Avalon buses. As the custom FPGA logic, our fixed-point

bicubic interpolation parallel arithmetic operations with signed
integers are implemented. The top-level entity includes: ports
to the outside of the SoC (System on Chip) chip, an instance
of the QSYS system, and possible instances of the custom
FPGA logic components. To make the code morc rcadablc and
the integration and parametrization of different parts simpler,
a VHDL package to define custom global signal types and
constants is also declared.

B. Access to FPGA

From HPS, the Avalon buses are seen as memory-mapped
I0s. For this low-level memory access a program written in
C is used. Its purpose is to write the x and y coordinatcs
to two memory addresses of the lightweight bridge, and then
read the result from another address. The read function can be
called immediately after calling the write function, because the
FPGA calculates the result with a time, which is less than the
delay between the two function calls. Before using the write
and read functions of the program, the initialization function
maps the memory addresses of the lightweight bridge into the
process memory, so that these addresses can be used later.

V. EXPERIMENTS

We conducted experiments to study the quantization er-
ror, complexity, speed and power/energy consumption of the
proposed algorithm. We implemented the floating-point and
fixed-point algorithms in Matlab and fixed-point algorithm in
VHDL. The floating point algorithm (Matlab) was used for the
analysis of fixed-point finite wordlength errors in Matlab and
FPGA. For simplicity, we will call finite wordlength errors
caused by quantization of signals, roundoff errors occurring
at arithmetic operations and quantization of constants as a
quantization error.

A. Input data and wordlength

For testing we choose a well-known Matlab data generated
by the function Peaks(25,25) [17]. The function generates a
mixture of 2-D Gaussians. The data matrix size is 25 x 25.
Thus the range of z and y is [1,25] and translation is not
needed. The original Peaks(25,25) values are multiplied by
30. This gives a data range [—189.79,239.89)].

According to our generalized wordlength representation
(Section 3) we suppose to work with signed (019 7 numbers for
f(i,j) and unsigned Q5 7 for x and y. Given the @y, , numbers
Matlab automatically generates a VHDL package containing
the constants determining the several wordlengths used in the
fixed-point calculations. The HPS-FPGA scheme is used for
calculation (Fig. 2). The input data represents coordinates x
and y. The HPS multiplies these values by 27 for the fixed-
point calculation. Finally, the HPS divides the interpolated
value by 27.

B. Matlab Test

First, we implemented a floating-point algorithm in Matlab.
To test it we generated a 3D surface using the given matrix
J (function Peaks(25,25) data) for interpolating and, then,

Floating-point algorithm

300

200

@

10°! !

Mean absolute error

3 5 7 9 11 13
(b n [bits]

Fig. 5. a) Floating-point interpolation using Matlab. The circle with a radius
5 and center at (14,14) is projected onto the surface interpolating the input
data (black curve). b) The mean absolute error (logarithmic scale) vs. the
number of fractional bits n. The vertical error bars scaled by a factor of 4 for
visualization show the confidence interval at level 0.95.

synthesized the projected circle with a radius 5, center located
at (14, 14). One can see the interpolation results in Fig. 5a.

Before FPGA implementation we tested the quantization
error depending on the number of fractional bits n at a
confidence interval (CI) of 0.95 (Fig. 5b). Figure 5b shows
that a reasonable choice for the number of bits is 7 that gives
a relatively small quantitative error (mean absolute error of
0.044 at 95% CI[0.0014 0.073]).

C. FPGA Test

The quantization error was calculated for 10,000 uniformly
distributed random points. One set of interpolated points
was determined using the floating-point Matlab algorithm.
The other set of interpolated points was determined using
the fixed-point algorithm on FPGA. Four quantization error
metrics were used in comparisons: maximum absolute error
(MAXAE), mean absolute error (MEANAE), median absolute
error (MEDIANAE), and standard deviation (STD) at n = 7
(Tab. I). The relative error defined as the ratio of the maximum

absolute error and the maximum absolute value of signal is
0.36% at n = 1.

TABLE I
FOUR QUANTIZATION ERROR METRICS

MAXAE MEANAE MEDIANAE
0.87 0.08 0.03

STD
0.13

The quantization error surface is shown in Fig. 6a. One can
see that the quantization error is nonuniformly distributed upon

the interpolated surface. To understand the error behavior we
calculated the numerical gradient over the interpolated surface
(Fig. 6b). Two plots (Fig. 6b, 6¢) indicate that the quantization
error increases with the increasing gradient.

Then, we calculated the gradient magnitude and mean
absolute error over the interpolated surface (Fig. 6¢). The
mean absolute error for the data in each cell of the grid was
calculated. The gradient magnitude is as follows:

(f2)2 + (F))%)

where f; and f; are numerical derivatives for = and y coor-
dinates. It is clear that there is a reasonable linear dependence
between the mean absolute error and gradient magnitude. The
Pearson correlation coefficient is 0.42 that indicates a moderate
positive relationship between mean absolute error and gradient
magnitude. In addition, we measured the correlation coefficient
for the slowly varying industrial application data set. The
value measured was 0.8, i.e. a strong correlation. This is in
accordance with the nature of bicubic interpolation, which well
suits for smoothed data.

Timing analysis was implemented using TimeQuest Timing
Analyzer (Intel). The solution was analyzed for delays in the
digital circuit. To find the maximum clock frequency, the multi
corner mode was utilized. The obtained result for bicubic
interpolation is F),,, = 27.26 MHz.

To estimate the complexity and logic utilization of the
solution compilations with several system parameters were
made (Tab. II). In this experiment, we varied n the number
of bits in the fractional part of Q,, , and monitored logic
utilization, number of registers and DSP blocks. The results
show the increase number of logic initialization and total
registers with the increase of fractional bits while the number
of DSP blocks are not changed.

G=

TABLE 11
COMPARISON WITH VARIED SYSTEM PARAMETERS. THE NUMBER OF DSP
BLOCKS 1S 25 (22%) FOR ALL CASES.

n bits of Qmun n=3 n=5 n=7 n=9 n=11 n=I3

Logic 2,528 2,952 3356 3,799 4,144 4,545
initialization 6% 7% 8% 9% 10% 11%
Total registers 14 16 18 20 22 24

Finally, we measured power and energy consumption with
and without FPGA accelerator using the same SoC board (Fig.
7). For calculation, we utilized the same 10,000 uniformly
distributed random points used in the quantization test. The
measurements were made using the oscilloscope Agilent DSO-
X 4024A (Tab. III).

Tests with the C-program running in HPS and the acceler-
ated program using HPS-FPGA were run eight times each. We
measured the static and dynamic parameters. Table IIT shows
that the static power of HPS is higher than HPS-FPGA even
though that depends on a number of active logical elements.
The average dynamic power with the HPS only configuration
is lower than with FPGA accelerator (0.28 W against 0.34 W).
However, the computational time with HPS-FPGA is shorter

(a)

100

()
S
@
e
S
]
[
o]
©
c
]
(]
=
© Gradient magnitude

Ilig. 6. a) Quantization error surface. b) The gradient over the interpolated
surface. The highest values of gradient are shown by white color. ¢) Mean
absolute error vs. gradient magnitude showing a moderate strength of rela-
tionship.

(in average 59% of C-program time) and as a result, the total
energy consumption is lower (31.57% less). We note that fixed
costs due to reading and writing files and preprocessing the
data reduce the total percentage saving of execution time and
energy consumption.

VI. CONCLUSIONS

In this paper, we proposed a hardware implementation of
an accurate fixed-point bicubic interpolation intended for an
industrial control system. The general recommendation for the
wordlength selection depending on the input data format were
given. In the experiments, we used signed (9,7 numbers
for the interpolated values and unsigned (s numbers for
the input values. These values can be changed because the
constants depending on these wordlength values are auto-
matically calculated in Matlab for the VHDL package. The
chosen @, , numbers for the input and output gave the

TABLE III
POWER (P) AND ENERGY (E) FOR HPS (C-PROGRAM) AND HPS-FPGA
USING THE SAME SOC BOARD FOR EIGHT MEASUREMENTS. THE INDEX
H STANDS FOR HPS AND F STANDS FOR HPS-FPGA.

Parameter, rms

Average value and
confidence interval

% Py, W 5.7, 95% CI[5.7, 5.7]
7] Pr, W 5.46, 95% CI[5.46, 5.46]
Py, W 0.28, 95% CI{0.259, 0.301]
Q
‘E Pr, W 0.34, 95% CI[0.32, 0.36]
E Ey,J 0.19, 95% CI[0.169, 0.211]
/A Ep,J 0.13, 95% CI[0.123, 0.137]
Esaved, % 31.57
6.6I
6.4I
=z 6.2|
2 5
s |
B5g
5.6;
54 . - . :
1.5 2 2.5 3
(@) Time, s
6.6)
6.4
z62
g 6
o]
Lsg
5.6
545 : -
10.5 11 11.5 12
(b) Time, s

Fig. 7. Power oscillogram for HPS (a) and HPS-FPGA (b) (one measurement).
The static power for HPS-FPGA is lower while the dynamic power is higher
than for HPS. The HPS-FPGA computational time is shorter than HPS and
as a result, the energy consumption is lower (31.57% less). The time discrete
is 25 ms and the measurement time interval is 2 s.

relative quantization error of 0.36% and achieved 27.26 MHz
frequency for function Peaks(25,25). The HPS-FPGA energy
consumption was about 31% lower than when using a C-
program only running in the same chip. The HPS-FPGA static
power was 4.2% lower than when using the C-program.

In the future, we plan to implement fixed-point bicubic
interpolation for images.

ACKNOWLEDGMENT

We thank Markku Suistala from the Vaasa University of
Applied Sciences, Finland, for the help in the FPGA energy
measurements.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

REFERENCES

J. FHughes, A. Van Dam, J. D. Foley , M. McGuire, S.
K. Feiner, and D. F. Sklar, Computer Graphics: Principles
and Practice, Pearson Education, 2014.

J. Garnero and D. Godone, “Comparisons between dif-
ferent interpolation techniques,” The Role of Geomatics
in Hydrogeological Risk, Padua, Italy, The International
Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. XL-5/W3, Feb. 2013,
pp. 139-144,

C. C. Lin, M. H. Sheu, H. K. Chiang, Z. C. Wu,
J. Y. Tu, and C. H. Chen, “A low-cost VLSI design
of extended linear interpolation for real time digital
image processing,” In 2008 International Conference on
Embedded Software and Systems, July 2008, pp. 196
202.

T. M. Lehmann, C. Gonner, and K. Spitzer, “Survey: In-
terpolation methods in medical image processing,” IEEE
Transactions on Medical Imaging, vol. 18, November
1999, pp. 1049-75.

M.E. Angelopoulou, C. S. Bouganis, P.Y. Cheung, and
G. A. Constantinides, “FPGA-based real-time super-
resolution on an adaptive image sensor,” In Interna-
tional Workshop on Applied Reconfigurable Computing,
Springer, Berlin, Heidelberg, March 2008, pp. 125-136.
N. Bellas, S. M. Chai, M. Dwyer, and D. Linzmeier,
“Real-time fisheye lens distortion correction using au-
tomatically generated streaming accelerators,” In 2009
17th IEEE Symposium on Field Programmable Custom
Computing Machines, April 2009, pp. 149-156.

A. Amanatiadis, I. Andreadis, and K. Konstantinidis,
“Design and implementation of a fuzzy area-based
image-scaling technique,” IEEE Transactions on Instru-
mentation and Measurement, August 2008, vol. 57,
pp-1504-1513.

N. Vidyashree and S. Usharani, “Implementation of im-
age scalar based on bilinear interpolation using FPGA,”
IJARECE, June 2015, vol. 4, pp. 1620-1624.

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

[17]

J. Xiao, X. Zou, Z. Liu, and X. Guo, “Adaptive in-
terpolation algorithm for real-time image resizing,” In
First International Conference on Innovative Computing,
Information and Control, Aug. 2006, vol. 2, pp. 221-224,
M. A. Nuno-Maganda and M. O. Arias-Estrada. “Real-
time FPGA-based architecture for bicubic interpolation:
an application for digital image scaling,” In 2005 Inter-
national Conference on Reconfigurable Computing and
FPGAs, Sep. 2005, pp. 8-pp.

Y. Zhang, Y. Li, J. Zhen, J. Li, and R. Xie, “The hard-
ware realization of the bicubic interpolation enlargement
algorithm based on FPGA,” In 2010 Third International
Symposium on Information Processing, Oct. 2010, pp.
277-281.

J. Jantzen, “Tuning of fuzzy PID controllers,” Technical
University of Denmark, report. 1998.

R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde, and
I. Bolsens, “A methodology and design environment
for DSP ASIC fixed point refinement,” In Design, Au-
tomation and Test in Europe Conference and Exhibition,
Proceedings (Cat. No. PR00078), 1999, pp. 271-276.
R. Keys, “Cubic convolution interpolation for digi-
tal image processing,” IEEE Transactions on Acous-
tics, Speech, and Signal Processing, 1981, Vol. 29(6),
pp-1153-1160.

D. Bishop, “Fixed point package users guide,” Packages
and bodies for the TEEE, 2010, pp. 1076-2008.
Doulos: https://www.doulos.com/knowhow/
vhdl_designers_guide/numeric_std/, Last
14.05.2019.

MathWorks: https://se.mathworks.com/help/matlab/ref/
peaks.html, Last access: 22.05.2019.

aCCess:

