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Parameter Estimation for the Langevin Equation
with Stationary-Increment Gaussian Noise

Tommi Sottinen* and Lauri Viitasaari

January 4, 2017

Abstract

We study the Langevin equation with stationary-increment Gaussian
noise. We show the strong consistency and the asymptotic normality
with Berry—Esseen bound of the so-called second moment estimator of
the mean reversion parameter. The conditions and results are stated
in terms of the variance function of the noise. We consider both the
case of continuous and discrete observations. As examples we consider
fractional and bifractional Ornstein—Uhlenbeck processes. Finally, we
discuss the maximum likelihood and the least squares estimators.

2010 Mathematics Subject Classification: 60G15, 62M09, 62F12.
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1 Introduction

We consider statistical parameter estimation for the unknown parameter
6 > 0 in the (generalized) Langevin equation

AUl = —oul At +dG,,  t>0. (1.1)

Here the noise G is Gaussian, centered, and has stationary increments. We
assume, without any loss of generality, that Gy = 0. The initial condition
Ug £ = ¢ can be any centered Gaussian random variable. We consider the
so-called Second Moment Estimator (SME) and show its strong consistency
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and asymptotic normality, and provide Berry—Esseen bound for the normal
approximation. The SME was called Alternative Estimator by Hu and
Nualart [15] to contrast the Least Squares Estimator. We renamed it the
SME to emphasize that it is based on the method of moments applied to the
second empirical moment.

The Langevin equation is named thus by the pioneering work of Langevin
[22]. Sometimes the solutions to the Langevin equation are called Ornstein—
Uhlenbeck processes, due to the pioneering work of Ornstein and Uhlenbeck
[37]. In these works the noise was the Brownian motion, and in this case the
equation has been studied extensively since; see, e.g., Liptser and Shiryaev [23]
and the references therein. Recently, the Langevin equation with fractional
Brownian noise, i.e., the fractional Ornstein—Uhlenbeck processes, have been
studied extensively in, e.g., [3, 10, 11, 19, 20, 30, 31, 35, 36], just to mention
a few very recent ones.

The rest of the paper is organized as follows: In Section 2 we consider
the Langevin equation is a general setting and provide some general results.
Section 3 is the main section of the paper. There we introduce the SME
and provide assumptions ensuring its strong consistency and asymptotic
normality, or the central limit theorem. We also provide Berry—Esseen
bounds for the central limit theorem, and consider the estimation based on
discrete observations. In Section 4 we provide examples. We show how some
recent results concerning the fractional Ornstein—Uhlenbeck processes follow
in a straightforward manner from our results, and extend the previous results.
We also study the bifractional Ornstein—Uhlenbeck processes of the second
kind. In Section 5 we discuss Least Squares Estimators (LSE) and Maximum
Likelihood Estimators (MLE). We argue that the SME is, under the ergodic
hypothesis, the most general estimator one could hope for. Moreover, we
argue that the LSE is not appropriate in many cases. For the MLE, we point
out how it could be used in the general Gaussian setting. In Section 6 we
draw some conclusions. Finally, the proofs of all the lemmas of the paper
are given in Appendix A.

2 Preliminaries

2.1 General Setting

Let us first consider the Langevin equation (1.1) in a general setting, where
G is simply a stochastic process, and the initial condition £ is any random
variable. The solution of (1.1) is

t
Ut =e ¢ 4 / e =9 qq,. (2.1)
0



Indeed, nothing is needed here, except the finiteness of the noise: (2.1) is the
unique solution to (1.1) in the pathwise sense, and the stochastic integral in
(2.1) can be defined pathwise by using the integration by parts as

t t
/ e =9 4G, =G, — 0 / e t=5) G ds.
0 0

Any two solutions U?%¢ and U%¢ with the same noise are connected by the
relation

U = UPS e (¢ —¢).

Since our estimation is be based on the solution that starts from zero, we
introduce the notation X? = U?0,

For the existence of the stationary solution, the noise G' must have
stationary increments. Then, by extending GG to the negative half-line with
an independent copy running backwards in time, the stationary solution is

t
Ul = / e =9 aa,, t>o. (2.2)
— o
In other words, the stationary solution is U? = U%$tat | with

0
€stat = / th dG;.

In particular, the stationary solution exists if and only if the integral above
converges (almost surely), and in this case

X! =v! - Uy, (2.3)

Remark 2.1. By [38, Theorem 3.1] all stationary processes are the sta-
tionary solutions (2.2) of (1.1) with suitable stationary-increment noise G
and parameter 6. Also, by Barndorff and Basse-O’Connor [4, Theorem 2.1]
the stationary solution of (1.1) exists for all integrable stationary-increment
noises.

2.2 Second Order Stationary-Increment Setting

Assume that the noise G is centered square-integrable process with stationary
increments.

Remark 2.2 (Some notation). By v we denote variance of G, by rg the
autocovariance of U?, and by 4 the covariance of X¢. By ® and ® we denote
the cumulative and complementary cumulative distribution functions of
the .47(0, 1)-distributed variable, respectively; .4#7(0,1) denotes the standard
normal distribution. By C' we will denote a universal constant depending only
on v; Cg and Cp , and so on, are universal constants depending additionally



on #, and 6 and K, and so on. In proofs, the constants may change from
line to line and sometimes the dependence on the parameters are suppressed.
We use the asymptotic notation f(7') ~ ¢g(7T") for

im @ =1
T—o00 g(T) '

The existence of the stationary covariance rg, given by Proposition 2.1,
is ensured by the following elementary lemma.

Lemma 2.1. Let v: R — R be a variance function of a process having
stationary increments. Then, for allt > 1,

v(t) < Ct2

Proposition 2.1.

t 0 0
ro(t) = Gze_et/ / P+ g (s, u) dsdu — 9/ e%g(t,s)ds,

—00

where
ot ) = % [u(t) + o(s) vl — )]

In particular,

Proof. By integrating by parts, we obtain

0 t 0
ro(t) = E [—/ 0e7° GG ds +/ / 020G q, dsdu] )

The claim follows from this by the Fubini’s theorem, if the integrals above
converge. To this end, it is necessary and sufficient that 74(0) is finite. Now,

ro(0) = 922/_(;/_(; el [v(t) +o(s) —v(t — s)} dtds

0 92 0 —t
= 9/ Pt (t) dt — 2/ eft [/ IH3)y(s) ds] dt.



For the latter term we have

02 0 —t
2/ ot [/ o (t+s) ds] dt
—00 —00

2 poo min(—s,0)
= i v(s)e? [/ et dt

2 —00 —00

R I S A

0 oo
= Z [/ v(s)e’ ds +/ v(s)ef*e 208 ds}
—0o0 0

_ o [ —0s
= 2/0 e v(s)ds.

ds

Consequently, we have shown (2.4). Since, by Lemma 2.1, v(t) < Ct2, the
finiteness of ry follows from the representation above. O

Proposition 2.2.
Yo(t, s) = ro(t — s) + ey (0) — e 'rg(s) — e "ro(1).
In particular,
ko(t,s) = |ya(t,s) —rg(t — s)| < Cpe 0 min(ts)

Proof. The formula for 7y is immediate from (2.3). As for the estimate,
note that |rg(t)| < 79(0) by the Cauchy-Schwarz inequality. Consequently,
assuming s < ¢,

ko(t,s) < e P0F)rg(0) + e Prg(0) + e %1y (0)
= 7"9(0) [eiet -+ eie(tfs) —+ 1:| e*HS’
from which the estimate follows. =

2.3 Gaussian Setting

Assume that the stationary-increment noise G in the Langevin equation (1.1)
is centered, continuous and Gaussian with Gg = 0. Then the continuous
stationary Gaussian solution can be characterized by its autocovariance
function ry given by Proposition 2.1.

Remark 2.3 (Continuity). In the Gaussian realm the assumption that G is
continuous is essential. Indeed, if G were discontinuous at any point, then
U? would be discontinuous at every point, and also unbounded on every
interval by the Belyaev’s alternative [5]. Parameter estimation for such a U?
would be a fools errand, indeed.



3 Second Moment Estimator

For the SME of Definition 3.1 below to be well-defined we need the invertibility
of 1(0) = r9(0), which is ensured by the following assumption:

Assumption 3.1 (Invertibility). v is strictly increasing.

Lemma 3.1 (Invertibility). Suppose Assumption 3.1 holds. Then ¢ : Ry —
(0,9(04)) is strictly decreasing infinitely differentiable convex bijection.

Definition 3.1 (SME). The second moment estimator is

_ 1 [T
_ -1 - 0\2
by — <T/O (X9 dt),

where

is the variance of the stationary solution.

Remark 3.1. The idea of the SME is to use the ergodicity of the stationary
solution directly. Therefore, it would have been more natural to base it on
the stationary solution U? instead of the zero-initial solution X¢. However,
from the practical point of view, using the solution X? makes more sense,
since it does not assume that the Ornstein—Uhlenbeck process has reached
its stationary state. Moreover, the use of the zero-initial solution instead of
the stationary solution makes no difference (except when bias is concerned,;
see Remark 3.4). Indeed, by virtue of Proposition 3.1 below, we could have
used any solution U%¢ with any initial condition &.

Proposition 3.1. Suppose the stationary solution U is ergodic. Then, for
all initial distributions &

Proof. Let us write

e 0,6\2
7 | wra

| P NV
= 5 | w2

T _19 (T _770\2 T
— 1/ (Uttg)Q dt + 2(§ UO) / e—@tUtQ dt + (5 UO) / e—29t dt.
T Jo T 0 T 0



By ergodicity, the first term converges to ¥ () almost surely. Also, it is clear
that the third term converges to zero almost surely. As for the second term,
note that U? is ergodic and centered, which implies that

1 T
T/o Uldt -0 a.s..

Consequently, the second term converges to zero almost surely. O

3.1 Strong Consistency

The strong consistency of the SME will follow directly from the ergodicity.
For Gaussian processes, the necessary and sufficient conditions for ergodicity
are well known and date back to Grenander [13] and Maruyama [24]. We
use the following characterization for ergodicity:

Assumption 3.2 (Ergodicity). The autocovariance ry satisfies
1 /T
lim — t)| dt = 0.
Jim = [ nte)

Remark 3.2 (Gaussian Ergodicity). In addition to Assumption 3.2, other
well-known equivalent characterizations for the ergodicity in the Gaussian
realm are

(i)

lim / ' (t)?dt =0
1m — = U.
T—00 T 0 re

(ii) The spectral measure pg defined by the Bochner’s theorem

i) = [ T e ()

has no atoms.

Theorem 3.1 (Strong Consistency). Suppose Assumption 3.2 and Assump-
tion 3.1 hold. Then 3

0T — 0
almost surely as T — oo.

Proof. By Assumption 3.2, the stationary solution U? is ergodic. Conse-
quently, by Proposition 3.1

1 T
Jim 7 [ (XDt = v0).

Since, by Lemma 3.1, ¢ is a continuous bijection, the claim follows from the
continuous mapping theorem. ]



Remark 3.3 (Gaussian assumption). The assumption of Gaussianity is
not needed in construction of the SME in Definition 3.1. Also, the strong
consistency result of Theorem 3.1 does not rely on Gaussianity. However,
Assumption 3.2 expresses ergodicity in terms of the autocovariance function
rg and this is essentially a Gaussian characterization. Theorem 3.1 will remain
true for any square-integrable continuous stationary-increment centered noise
once Assumption 3.2 is replaced by a suitable assumption that ensures
the ergodicity of the stationary solution. On the contrary, later the proof
of Theorem 3.2 concerning the asymptotic normality of the SME relies
heavily on the assumption of Gaussianity, and cannot be generalized in any
straightforward manner to non-Gaussian noises.

Remark 3.4 (Bias). Unbiasedness is a fragile property, as it is not preserved
in non-linear transformations. Thus, it is not surprising that the SME is
biased. Indeed, suppose we use the stationary solution U? instead of X? in
the SME. Let us call this Stationary Second Moment Estimator (SSME),
and denote it by 6. Then

.. T T
Blo(in)] = 7 [ BUOLRIat =5 [ o@)at = v0)

T
So, the SSME is unbiased for 4(¢). However, 1 is strictly convex, with makes
1 strictly concave. Consequently, E[fr] < 6. For the estimation based
on the zero-initial solution X even (A7) is biased, but asymptotically
unbiased. Indeed, straightforward calculation shows that

E[y(0r)] = (0) + 1 [/OT e rg(t) dt + 72(3) [1 — G_MH :

In principle, since the distribution of #7 and the function v are known, it is
possible to construct an unbiased second moment estimator. However, the
formula would be very complicated and, moreover, it would depend on the
unknown parameter 6.

3.2 Asymptotic Normality

It turns out that the rate of convergence and the corresponding Berry—Esseen
bound for the SME are given by

o T[T
we(T) = TQ/O/O ro(t — s)% dsdt,

T
P i TGIL

T\/wy(T)

This leads to the following assumption for the asymptotic normality:



Assumption 3.3 (Normality). Rg(T") — 0 as T — oc.

Our main result, Theorem 3.2 below, shows that the SME satisfies
asymptotic normality with asymptotic variance wg(T')/v’(#)? and the Berry-
Esseen bound for the normal approximation is governed by Ry(T').

Theorem 3.2 (Asymptotic Normality with Berry—Esseen Bound). Suppose
Assumption 3.2 and Assumption 3.1 hold. Then there exists a constant Cy
such that

WO (5
P|l——=(0r—0)<z|—-® < CoRy(T).
seR wg(T)<T ) < x| = 2@)| < CoRo(T)
In particular, if Assumption 3.8 holds, then
/
MUAOIS (eT - 9) 4 4(0,1).
we(T)

The proof of Theorem 3.2 uses the fourth moment Berry—Esseen bound
due to Peccati and Taqqu [28, Theorem 11.4.3] that is stated below as Propo-
sition 3.2. The setting of Proposition 3.2 is as follows: Let W = (W})icr,,
be the Brownian motion, and let Py be its distribution on L?(R, ). The ¢*®
Wiener chaos is the closed linear subspace of L%($2, %y, Pyw) generated by
the random variables H, (&), where H, is the ¢"" Hermite polynomial

—1)¢ 22 dq? a2
Hya) = et i e,

and & = [[° f(t) dW; for some f € L*(R4).

Proposition 3.2 (Fourth Moment Berry—Esseen Bound). Let F' belong to
the ¢t" Wiener chaos with some q > 2. Suppose E[F?] = 1. Then

sup [P[F < 2] — q)(g;)‘ <2, /(13;1 VE[FY — 3.

zeR

The following series of elementary lemmas deal with Gaussian processes
in general, not the Gaussian solutions to the Langevin equation in particular.
To emphasize this, we drop the parameter € in the notation. In this general
setting, X = (X¢)ier, is a centered Gaussian process with continuous
covariance function ~y: ]R?F — R and

1

Qr=7 /OT [XE - E[XE]] dt

Lemma 3.2. Qr belongs to the 2" Wiener chaos.



Lemma 3.3.

2
E[Q7] = / Y(t1,t2)? dtydts
[ T] T2 [O,T]Q ( )
. 2
E[Q4T} = 12 TQ/ ’y(t1,t2)2dt1dt2]
(0,772
24
+ / Y(t1, t2) v (2, t3)y(ts, ta)y(ta, t1) dtrdtadtsdty.
T [O,T}‘l

Lemma 3.4. All bounded covariance functions v satisfy

/[ ’ (1, t2)y(t2, t3)v(t3, ta)y(ta, t1) dt1dtadtadty
0,T
T 2
< sup / |y(t,t1)| dty / Y(t1,t2)? dt1dts.
tefo,1]J0 [0,7]2
Lemma 3.5. There exists a constant C such that
T
su t,s)|ds
spP |- < | —aw)| < c Pte[To,I;fo v, 5)lds
veRr E[Q7] \/fo Jo (t,s)? dtds

Let us then turn back to the special case of the Langevin equation. To
this end, we decompose

T
7 | Rt vo) = @+ (),
where
T
Qh = 5 | ety —mxs]ar
T
W) = 7 [ (Bl - v at

Now, the quadratic functional QQT belongs to the 24 Wiener chaos, and
the idea is to show that Q?F converges to a Gaussian limit with asymptotic
variance wg(T)/v'(0)? and the associated Berry—Esseen bound CyRy(T),
while the remainder €y (7") is negligible.

Lemma 3.6 (Equivalence of Variance). In general,

T
E[(Q%)?] ~ wy(T) = % /O ro(H)2(T — 1) dt.

In particular, if fooo ro(t)? dt < oo, we obtain the rate

4 [ re(t)? dt

E[(Q})?) 2

10



Lemma 3.7 (Berry-Esseen Bound). There exists a constant Cy such that

0
sup (P @ <z|—®(x)| < CoRy(T).
z€R wg(T)
Proof of Theorem 3.2. Suppose first that
/
. _lvew
we(T)

Since O > 0 almost surely, we then have

e L2OL (5:-5) <] o

and a standard estimate for the tail of a normal random variable yields

Suppose then that

LWl
wy(T)

Since 1 is strictly decreasing and continuous, we have

P [ ['(0)
we(T)

- = \/we(T)QC
I RO

(éT—9> <z

= P w@T)zw(

Let us then introduce the short-hand notation

o (Ytte +0) - vi0)
wp(T) '




By using the calculation and the short-hand notation above, we split

WO (5
P [ oo (T) (HT—9> <z|—P(x)
v Qr+0(T) ] _ o)
wy(T)
< |p|9r jvag("g) > vl B )|+ B ) — ()
= A;+ As.
For the term A;, we split again
A+ao® ] s
. wo(T) - v

QY S 9(T)

< ’ [ > v
wy(T) wy(T)
i, D) )\ 50,
+‘®< we(T)> o )’
= A1+ Ao

By the Berry-Esseen bound of Lemma 3.7, A1 1 < CgRy(T). Consider then
Ay 2. Since |®(z) — ®(y)| < |z — y|, we have

A, <)
125 o)

By the Cauchy—Schwarz inequality |rg(t)| < rg(0) = 1/(#). Consequently,

T T
eo(T) = ¢(9)% /0 ezgtdt—% /0 o0ty (1) dt

_@(V_ 0(T) )’
wy(T)

L (Tr o ot

< w(a)T/O [— te }dt

< &

- T

Therefore,
A, < Co/T
7 \/1/T2 fonoTTg(t—S)Qdet
Cy

\/fOTfOT ro(t — )2 dsdt
Jy Iro®)| dt
\/fOTfoT ro(t — s)2 dsdt

12

IN

Co




where the last inequality follows from the fact that r¢(0) > 0 and we can
assume that T' is greater than some absolute constant.

Finally, it remains to consider the term As. For this, recall that v is
smooth. Therefore, by the mean value theorem, there exists some number

nen o+ 7%%] such that

- 1 vwe(T) 3
Y = e w(wwﬂ *Q w@]
_ 1 / wG(T)x
- umnwm4hmw
_ Y
PRGN

Furthermore, since 1) is decreasing, we have

V')  Y'(n)

OO

ow-o(35)

Note also that, since v is convex, for any x we have

< Y

Consequently,

ERETION
Then

Ay =

Suppose then first that

Wl e )
wy(T) 2/ wy(T)

13



Then

S
Ay < / e s dy
|x’ _|'¢/("7)|2"E22
< W (n) — ' (0)] e 2@l
W’/(H)M ( ()}
< o
|z
< Covwy(T)

where the last inequalities follows from (3.1) together with the fact that a
2

2

22"17
function f(z,y) = x“e” 2 |z — 1| is uniformly bounded. Finally, let

> —M. (3.2)
2/wy(T)

By the proof of Lemma 3.1 we have
1 o0
wio) =y [ e dulo),

0

and hence " <9 + IJ’}?O(;[I) ZL‘) is uniformly bounded for any x satisfying

(3.2). By using the change of variable y = 222 together with the fact that
4.2

falz,y) = 22~ "2 is also uniformly bounded, we observe

)
GO 42
As < / e zdy
xT

1
Co—r |¥'(n) —¥'(0)].
< OTow (@) ' (n) —4'(0))
By using the mean value theorem again, we find some 7 € [0, 7] such that
1 .- T
) = O] = 1w 1) < o/l

by the fact that ¢”(7) is bounded. Therefore, it remains to show that

Vwe(T) < CoRy(T),

which translates into showing that

9 T pt T
// re(t—s)stdtSC’e)/ [ro ()| dt.
T JoJo 0

14



Since 79 (t)? < 9(0)|rg(t)|, the inequality above follows by applying I'Hopital’s
rule to it. This finishes the proof of Theorem 3.2 O

Next we state some corollaries that make Theorem 3.2 somewhat easier
to use in applications. Corollary 3.1 deals with the classical /T rate of
convergence and Corollary 3.2 deals with mixed models.

Corollary 3.1 (Classical Rate). Suppose Assumption 3.1 holds. Assume
Jo" re(t)* dt < co. Denote

o2(0) — fooo ro(t)? dt
N O]

Then there exists a constant Cy such that

VT
sup

T€R %

T 00 T
< Gy \/lf/o |r9(t)\dt+,//T rg(t)2dt+\/;/0 ro(t)2t dt

Proof. First note that Assumption 3.2 is implied by the assumption that
Jo% ro(t)? dt < oo. Then, let us split

P (GNT—9>§x — ®O(x)

VT(0r — 6)
P Wﬁx — ®(x)
_ lp [@1@ o) _ #2 o re@ e} a2/ e (t)2 dt
N Vwe(T) o VTwy(T) Twy(T)
x X rp(t)2
e 20/ Jo re(t)?dt _ o)
Twy(T)
= A;+ As.
Now

T 00
TwT(9)~4/ rg(t)2dt~4/ ro(t)? dt,
0 0

i.e., Twr(0) is asymptotically a positive constant. Consequently, we can take
the supremum over x on a compact interval, and Theorem 3.2 implies that
the term A; is dominated by

S 1o (t)] dt

1 T
CoRo(T) < Cy <Ot / Iro(t)] dt.
TfOT ro(t)2 dt VT Jo

15



For the second term, we use the estimate

sup ®(pr) — B()| < |p— 1.
zeR

20/ Jo" ro(t)? dt v Sy re(t)? dt
VTws(T) 1 [Tty (s)2 dsdt
we obtain for the term Ao the upper bound
o re(t)?dt — \/% fOTf(f ro(s)? dsdt

\/% fOTfOt ro(s)? dsdt

CM [ retrar— L [ rorasad
_ Cg\//ooorg(t)2dt—;/OTrg(t)Q(T—t)dt‘
— 09\//00 2dt+/ ro(t Qtdt‘

< ,/ 2dt+\/ / £)2tdt | ,

since |\/a — Vb| < \/la — b and Va + b < /a + Vb. O

Corollary 3.2 (Mixed Models). Let G*, i = 1,...,n, be independent contin-
uous stationary-increment Gaussian processes with zero mean each satisfying
Assumption 3.2 and Assumption 3.1. Let rg; be the autocovariance of the
stationary solution corresponding the noise G*. Assume that re; > 0 for all
i. Then, for the noise G =1 | GY, there exists a constant Cy such that

Setting

IN

'O (7
Pl (Gp—0) <z| —d
neh w9<T><T ) <z| - 0w
T
(1) dt
< Cg max nfo ro(t)

Lwwom \/fofo rgzt—s2dsdt

Proof. Since the G%’s are independent, the autocovariance for the mixed
model with noise G is rg = > " ; r9;. Consequently, Assumption 3.2 and
Assumption 3.1 hold. It remains to show that

T
fo o rei(t)dt < Mmax;—1 . ,nnfo r94(t) dt

\/fofo S ret —s))” dsdt \/fofo ro,;(t — s)? dsdt

16




forany j = 1,...,n. The case for the nominator is clear. For the denominator,
we use the fact that the rp ;’s are non-negative. Indeed, then

" 2
(Z ro,i(t — 8)) > rg;(t —s)°

i=1
for any j, as the cross-terms 79 ;(t — s)rg ,(t — s) are positive. d

We end this section by providing the following result on the convergence
of the moments of the estimator.

Theorem 3.3. Suppose that the variance function v satisfies
v(s) ~ Cs*

for some H € (0,1) as s — 0. Assume further that there exists Ty > 0 such
that for any p > 1 we have

1
sup E

0. 3.3
T>T {%foT(Xg)Qdu}p < (33)

If also Assumption 3.3 holds, then for any p > 1 we have

()

where N ~ A4(0,1).

— E[N?],

Proof. By mean value theorem we have

WO s N WO 1
wy(T) <9T 9>‘w'<w*1<5>> wo(T)

(Q% + 50(T)) :

where ¢ is some random point between 1(0) and 7 fOT (X?)2dt. Moreover,
by continuous mapping theorem, Slutsky’s theorem and Theorem 3.2, we
know that

[ [v'(0)] _|¢’(9)|} 1
V(=€) v(0) we(T)

converges to zero in distribution, and hence also in probability. Thus it
suffices to show that W is bounded in LP for any p > 1. Indeed, this

(QQT + 69(T))

implies that

OO ) ’
{[@z)’(w-l(f)) Ry <QT+€"(T)>}

17



is uniformly integrable for any p > 1, and thus converges to zero also in LP.

6
T

. . . Q
From this the claim follows since all the moments of converge to the
v wo (T) &

moments of standard normal random variable (see [26, Proposition 5.2.2.]).

First we estimate

P(0) = ;/000 se™% du(s)

v
Q

se” % du(s)

1V
| Q
| —— |
7N
SR N
N~

|

4
N
S
~~
—_

v

Q

N
0
[\o)
=

for large enough 6.

We next prove that ¢ (6) <
6, which in turn implies ¢~ (Q_QH“/) < (0. For this we write

/OOO e v (2) ds = /0917 e v (2) ds + /;: e v (%) ds.

For the first term we have

/617 e v (g) ds
0

AN
(4
—
=
2
SN—
o\,
8
)
.
(oW
®

IA
Q
<>

e
I
\_Q

and for the second term we have

o s ol [ s /s
e < o s (8
/al_we V(e)ds < e 2 /0 e 2V(0>ds
ol—
< fe” 2 g(1)
< co2.
Together these estimates imply
1 <C£_(2{E1)p
_ v
[ (=1 (E) I~

This, together with (3.3), proves the claim.

3.3 Discrete Observations

CH~2H7 for any v € (0,1) and large enough

In practice continuous observations are rarely available. Therefore, it is
important to consider the case of discrete observations. To control the

18



error introduced by the unobserved time-points, we assume that the driving
noise G is Holder continuous with some index H € (0, 1), i.e., G is Holder
continuous with parameter v for all v < H. The general idea is, that the
smaller the H the more care must be taken in choosing the time-mesh of the
observations. This gives rise to the condition (3.4) in Theorem 3.4.

Note that from the form of the Langevin equation it is immediate that
any solution is Holder continuous with index H if and only if the driving
noise is Holder continuous with the same index H. Due to [2, Corollary 1],
the following assumption is not only sufficient, but also necessary, for the
Holder continuity with index H:

Assumption 3.4 (Holder continuity). Let H € (0,1). For all € > 0 there
exists a constant C. such that

v(t) < C.t?H—2,

For notational simplicity, we assume equidistant observation times t; =
kAyn, £k =0,...,N. Denote Ty = NApy and assume that Ay — 0 with
Ty — oo. The SME based on the discrete observations is

N

éN = ’(/1_1 (1}N Z(XgAN)2AN) .

k=1

Theorem 3.4 (Discrete Observations). Suppose Assumption 3.2, Assump-
tion 3.1 and Assumption 3.4 hold. Assume further that

NAY =0, (3.4)
where .
2H + 5
= B(H) = 2_5
8= 8 = S

for some 6 > 0. Then, .
(9]\] — 0 a.s.

Moreover, if Assumption 3.3 holds, then

'O (5 d
o) (aN—e) 4 4 0,1).

Proof. Following the proof of [3, Theorem 3.2], it is enough to show that
1 L o~ o N R
_— g X An — X/)°dt|] — 0 as. 3.5
wp(Ty) \ TN k:l( kay) AN TN Jo (X) (3:5)

Let

Y= sup e
t,s€[tk—1,tk] ’ _8’



be the (H — ¢)-Hélder constant of the process X% on the subinterval [t_1, t;].
Similarly, let (with slight abuse of notation) Yy be the (H — ¢)-Holder
constant of the process X? on the entire interval [0, Toy] Then, by the identity
a®> — > = (a + b)(a — b), the Holder continuity of X?, and the triangle
inequality,

N T
1 1 N
— - XN2qt
T kE Ay T (XY)

J—TN

X002 (07|t

1 k
Tn+/we(TN) ; /tk—l ‘(

2 0 / 0
_ sup | X/ — X/ | dt
TN/ wy(Tn) ; tE[tr—1,tx] ‘ ‘ 75 ‘ ' ‘

2

sup \Xe\yk/ t— |
k—1

Tn+/we(Tn) ;te[tk_l,tk] ¢ te

H—e+1 N
= L sup ‘Xf‘Yk.

Tn+/wy(Tn) ;te[tk_mk]

Note that

N

IN

sup | XY
k—1 tEMtk—1,tk]

Ty,

ZYkQ < NY]%U
’UJ@(T) > CT_la

where the last estimate follows, e.g., from Lemma 3.6. Consequently, it
remains to show that

2H—2e+1

NH-=ta A2 y2 0 as. (3.6)

By [2, Theorem 1 and Lemma 2] (see also [3, Remark 2.3]) we have for all
p > 1 a constant C' = Cp g, such that

2 2
E|vY| <cryr.

From this estimate and from the Markov’s inequality it follows that for all
y>0andp>1,

Y, C
P []\;Z > y] < (AFNE).
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Now, by choosing p large enough, we obtain

oo
Z P [Ki > y] < 00
N=1
if
A¥NE< N~
for some a > 0. By (3.4), we may choose @ = 2¢/ — €. Indeed, since
B < 2, it follows that a > 0. Consequently, by the Borel-Cantelli lemma
N~¢Y2 — 0 almost surely. By applying this to (3.6) it remains to show that

1 2H—2+1
NHT2AY 2 0.

But this follows from (3.4) by choosing ¢ < min{H + 1/4,0(H + 1/2)/2}.
The details are left to the reader. O

Remark 3.5. The Berry—Esseen bound for Theorem 3.4 can be obtained as
in the proof above by analyzing the speed of convergence in (3.5). We leave
the details for the reader.

4 Examples

4.1 Fractional Ornstein—Uhlenbeck Process of the First Kind

The fractional Brownian motion B with Hurst index H € (0,1) is the
stationary-increment Gaussian process with variance function vy (t) = t2H.
Actually, it is the (upto a multiplicative constant) unique stationary-increment
Gaussian process that is H-self-similar meaning that

Hd _HpH
BY =a "B

for all @ > 0. For the fractional Brownian motion the Hurst index H is both
the index of self-similarity and the Hoélder index. We refer to Biagini et
al. [6] and Mishura [25] for more information on the fractional Brownian
motion. The fractional Ornstein—Uhlenbeck process (of the first kind) is the
stationary solution to the Langevin equation

U’ = —ou?at +daBH, t>o. (4.1)

The fractional Ornstein—Uhlenbeck processes (of different kinds) and re-
lated parameter estimations have been studied extensively recently, see, e.g.,
[3, 8, 15, 16, 17, 18, 32]. By Cheridito et al. [8, Theorem 2.3] the autocovari-
ance 1 g of the stationary solution satisfies, for H # 1/2, the asymptotic
expansion

H(2H — 1)t2H—2

- (4.2)

THO (t) ~
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as t — 0o. Also, by Hu and Nualart [15],

where I' is the Gamma function. Consequently, Assumption 3.2 and Assump-
tion 3.1 are satisfied for all H, and Assumption 3.3 is satisfied for H < 3/4.
Also, Assumption 3.4, required for discrete observations, is satisfied for all
H. Finally, we observe that Corollary 3.1 is applicable for H € (0,3/4), and
by using the self-similarity of the fractional Brownian motion it is clear that

/ rae(t)?dt = 0 o3,
0
where we have denoted
UIQLI = / TH71(t)2 dt. (4.3)
0

Let 04 be the SME associated with the equation (4.1). Proposition 4.1 below
extends the result of Hu and Nualart [15, Theorem 4.1] both by extending the
range of H and by providing the Berry—Esseen bounds. We note, however,
that the result of Proposition 4.1 is far from optimal. Indeed, in this case
the maximum likelihood estimator with optimal rate for all H € (0,1) can
be constructed as in Kleptsyna and Le Breton [18].

Proposition 4.1 (Fractional Ornstein-Uhlenbeck Process of the First Kind).
Let o be given by (4.3).

(i) Let H € (0,1/2]. Then

T (é;f _0) < :c] _ ()| < G0

P < =

sup
zeR

3

2
Ooy;

(ii) Let H € (1/2,3/4). Then

[ T [ Cuy
Pl — (04 —0)<z|-0 < .
igﬁ o2 ( T > - a:] ()| < /T3—4H

(iii) Let H =3/4. Then

T ~3/4 Cs/40
P —_— — < —&® < !
ek |\ 6o2log T (QT 0) = x] (z)] < Jog T’

where o is an absolute constant.
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Proof. Consider first the case H € (0,1/2). By Corollary 3.1, it is enough to
show that

C
\F/ a0 (t ydt+,/ ng 2dt+\/ /ng £)2tdt < ;ﬁ’

Here the first term is the dominating one. Indeed, by (4.2),

— Hldt ~ C 2H=2 g
\/T/o 7 r.6(t)] \/T H,e/1

Co.u
< =
T VT
o o
/ rag(t)?dt ~ Crp / tAH—4 q¢
T T
= CupVTH3,
1 (7 .
— H2tdt ~ C — t4H=3 d¢
T/o Tr,0(t) H.0 T/1
— CH79‘/T4H_3

The case H = 1/2 is classical and well-known, and stated here only for
the sake of completeness.

The case H € (1/2,3/4) can be analyzed exactly the same way as the
case H € (0,1/2), except now it is the second and third terms that dominate.

Consider then the case H = 3/4. Now Corollary 3.1 is not applicable.
Consequently, we have to use Theorem 3.2 directly. Let us first calculate the
asymptotic rate. By applying I’Hopital’s rule twice and then the asymptotic
expansion (4.2), we obtain

9 T pT )
w3/4,6(T) = TZ/O/O 7“3/4’9(75—8) dsdt

2logT 1 [T )
T logT/O 7”3/4,9( )

2(3/8)2logT 1/T
4 T 1T
2(3/8)2log T
0+ T

Consequently,
4,4(0) 397572 T
ws/a,6(T) \f G\ a7 = | o
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by setting o2 appropriately. For the Berry-Esseen upper bound, we estimate

S Irs /a0t ydt fo =12 q¢ ¢ VT
T /w3/479( ) \/>\/logT VT/logT
The claim follows. O

Remark 4.1. In the case H > 3/4 our method does not provide asymptotic
normality. Indeed, due to the results in Breton and Nourdin [7] it is expected
that asymptotic normality cannot hold in this case.

4.2 Noises Arising from Self-Similar Processes

The examples in the next two subsections deal with self-similar processes.
The motivation comes from the result of Doob [9] stating that the classical
Ornstein—Uhlenbeck process can be viewed as the inverse Lamperti transform
of the Brownian motion that is 1/2-self-similar. Therefore, let us start with an
H-self-similar Gaussian process Y. (For a representation of such processes
in terms of the Brownian motion see Yazigi [39]). The inverse Lamperti
transform with self-similarity parameters H and scale parameter 6 is

(LY = eV,

where H
at) = ape(t) = ge%t.

If YH is H-self-similar, then ,,2”[; %)YH is stationary, and vice versa. Fur-

thermore, and all stationary solutions U? = U¥ of the Langevin equation
are inverse Lamperti transforms of some H-self-similar Y see [21, 38].
Therefore we have, on the one hand,

UtH,g — e—@tyalé)

for some H-self-similar Y and, on the other hand,
t
UtI'LO — / efﬁ(tfs) de,@
—o0

for some stationary-increment noise G*? arising from the H-self-similar
process Y. Actually, we have

GtI—Le == A —0s dY (t)

Moreover, the family {G™?: 6 > 0} satisfies the scaling property
HA~HO d H
0" G e = G
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where we have denoted G = GH>1. This motivates the study of the following
Langevin equation where the noise arises from the H-self-similar process Y#
that depends on 6, but with a noise G¥ that is independent of 6:

AU’ = —guat + dGH. (4.4)

The solutions of these Langevin equations are called Ornstein—Uhlenbeck
processes of the second kind.

4.3 Fractional Ornstein—Uhlenbeck Process of the Second
Kind

The fractional Ornstein—Uhlenbeck process of the second kind arises by
setting YH# = BH | the fractional Brownian motion. This process has been
studied e.g. in [1, 3, 17]. By Kaarakka and Salminen [17, Proposition 3.11]
the autocovariance 7 of the fractional Ornstein—Uhlenbeck process of the
second kind has exponential decay. Consequently, Corollary 3.1 implies the
following:

Proposition 4.2. For the fractional Ornstein—Uhlenbeck processes of the
second find

C
p H.,0

N
aH,eT(H) (0¥ B 0) s

omy(d) = \/4 /000 rH,p(t)? dt.

4.4 Bifractional Ornstein—Uhlenbeck Process of the Second
Kind

sup —®(z)| <

rzeR

)

3

where

The bifractional Brownian motion B introduced by Houdré and Villa
[14], with parameters H € (0,1) and K € (0,1] is the Gaussian process with
covariance
E[BtH,KBtH,K} _ 2% [(£2H 4 2H)K | — o2HK]

The bifractional Brownian motion is a generalization of the fractional Brow-
nian motion, but it does not have stationary increments, except in the
fractional case K = 1. Consequently, there does not seem to be a natural
way to define the bifractional Ornstein—Uhlenbeck process of the first kind
that would have a stationary version. The bifractional Brownian motion is,
however, H K-self-similar, see Russo and Tudor [29]. Consequently, we can
define the bifractional Ornstein-Uhlenbeck process by setting Y 7K = pH.K
in equation (4.4).
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Lemma 4.1. The autocovariance rg i ¢ of the bifractional Ornstein—Uhlenbeck
process of the second kind has exponential decay.

Lemma 4.1 combined with Corollary 3.1 immediately yields:

Proposition 4.3. For the bifractional Ornstein—Uhlenbeck processes of the
second find

C
p H,K,0

—P(z)| <

sup
z€R

)

VI (o _g) <

OH,K.,0

o0
OH,K,0 = \/4/ T‘H,K,g(t)z dt.
0

5 Discussion on Other Estimators

3

where

It is a celebrated result by Gauss [12] that for multivariate Gaussian distri-
butions the Least Squares Estimator (LSE) and the Maximum Likelihood
Estimator (MLE) coincide, and this is a characterizing property of the Gaus-
sian distribution. Indeed, this is why Gaussian distributions are named
thus. In the infinite-dimensional case of Gaussian processes, the situation
is more delicate, as the following discussion shows. The discussion is based
on Hu and Nualart [15] in the case of the LSE and on Kleptsyna and Le
Breton [18] in the case of the MLE. To make the discussion short, we do not
present explicit assumptions in terms of the variance v, although this would
be possible. Instead, we confine ourselves in presenting the general ideas and
implicit assumptions.

5.1 Least Squares Estimator

In this subsection, § denotes the Skorohod integral. We refer to Nualart [27]
for details on Skorohod integrals.

One the one hand, the LSE

R Jrx0oxy

Or = fOT(Xf)Q ” (5.1)

arises heuristically by minimizing

T
/ 1 X0 +0X7%dt.
0
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On the other hand, by using the Langevin equation of the solution X, one
would hope that

T T T
/ X?ox?0 = —9/ (Xf)zdtJr/ X?6G;. (5.2)
0 0 0
This would lead to the LSE

T 50
Or =0— M (5.3)
Jo (XP)2dt

Unfortunately, the Skorohod integral is not (bi)linear. In particular, the
equation (5.2) does not hold. Indeed, this is obvious from the fact that
Skorohod integrals have zero mean. Consequently, the LSE’s defined by
(5.1) and (5.3), respectively, are not the same. The LSE defined by (5.3)
has been shown to be consistent for some fractional Ornstein—Uhlenbeck
processes, see [1, 15]. However, the LSE (5.3) depends on 6, the parameter
we want to estimate! Therefore, the LSE (5.3) is not an estimator at all.
Moreover, to show that the LSE (5.3) is consistent, one has to show that the
term fOT X 6Gy/ fOT(Xf )2 dt converges to zero. This suggest that it would
be more natural to define the LSE by (5.1). However, Proposition 5.1 below
shows that the LSE (5.1) will fail under rather general assumptions.

Proposition 5.1. Assume that U? is ergodic, and that the Skorohod integral
fOT X0 6X? exists. Let O be defined by (5.1). If (X4)%/T — 0 in L*(R) and
almost surely, then

éT —0 a.s.

Proof. By the It6 formula in [33],
T oosyo _Logn 1 012
Xy oXy = 5(Xp)” — SE[(X7)7]
0 2 2
Since UY is ergodic, Proposition 3.1 implies that

T
;/ (X9H2dt — (0) >0 as.
0

Consequently,
X 1(X%)?/T —E[(X9)2/T
b= LT ZBIOSRYT)
T Jo (X7)2dt
and the claim follows. O
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5.2 Maximum Likelihood Estimator

It is well-known stat the Maximum Likelihood Estimator (MLE) is the best
estimator in many ways: it is e.g. typically optimal in the local minimax
sense. The MLE is known for example for the fractional Ornstein—Uhlenbeck
process of the first kind [18], and in this case it outperforms the SME. We
discuss shortly, how the MLE could be constructed for more general cases.

In this subsection, the integrals are abstract Wiener integral as defined
in e.g. [34], or, equivalently, Skorohod integrals as defined e.g. in [33].

To construct the MLE, we assume the following Volterra representation

for the noise G: There exists a Gaussian martingale M with bracket (M)
and a kernel k € L (R%,d(M) x d(M)) such that

loc

Gy = /0 k(t, s) dMs. (5.4)

Furthermore, we assume the following inverse Volterra representation:

t
Mt = / k*(t,S) th (55)
0
Next, we define

t
M = /k*(t,s)dxf,
0
d /t
—0 * 6
= = k™(t,s)X, ds,
t d<M>t 0 ( )

implicitly assuming their existence.

Proposition 5.2 (MLE). Assume representations (5.4)—(5.5) and assume
that 2% € L*(Qx[0,T),dP xd(M)). Then the MLE based on the observations
X2, te0,T], is
_ T =0 amy
Op = ft—
fo (E9)2d(M

Moreover, if fOT(Ef)Q d(M); — oo almost surely, then the MLE is strongly
consistent.

Proof. By integrating the Langevin equation (1.1) against the kernel £* on
both sides, we obtain

t
M = —0/ k*(t, ) X% ds + M.
0

By plugging in 2%, this translates into
dM? = —02¢ (M), + dM,.
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Consequently, we can use the Girsanov theorem for Gaussian martingales,
which states that the log-likelihood ¢7(6) = log dP%/dPr can be written as

T 2
a0 =0 [ mauf - [ @raon,

The MLE 07 follows from this by maximizing with respect to .
The strong consistency follows from the equation

_ J = dm,
br =0 = T
Jo (EE)?d(M
by using the martingale convergence theorem. O

6 Conclusions

We have considered the Langevin equation with general stationary-increment
continuous centered Gaussian noise. We have stated mild conditions on the
variance function of the noise ensuring strong consistency and asymptotic
normality of the so-called second moment estimator of the mean-reversion
parameter. We have also provided Berry-Esseen bounds for the normal
approximation. We have shown that the second moment estimator works for
discrete observations provided that the noise is Holder continuous and the
observation-mesh is dense enough with respect to the Holder index of the noise.
We have also shown that our results work in examples rising from fractional
and bifractional Brownian noises, thus extending some recent results. Finally,
we discussed least squares estimators and maximum likelihood estimators.
We argue that the second moment estimator is, under the stationarity
assumption, the most general estimator, i.e., it works under the mildest
assumptions.

A  Proofs of Lemmas

Proof of Lemma 2.1. Let t > 0 and let [¢] be the greatest integer not ex-
ceeding t. Then

L]
|G| < |Ge = Gyl + > |Gk — G-
pt

By the Minkowski’s inequality and stationary of the increments,

VEIGH < \[EIGZ | + |1]y/B[GY).

The claim follows from this. O
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Proof of Lemma 3.1. By changing the variable in (2.4) we obtain

() = ;/OOO ety <2> dt. (A1)

Since v is strictly increasing, this shows that ¢ is also strictly decreasing.
Furthermore, () — 0 as # — 0o by the monotone convergence theorem.

By the Lebesgue’s dominated convergence theorem, the function

9»—)/ e u(t)dt
0

is smooth. Consequently, ¢ is smooth.
Finally, let us show that 1 is convex. Differentiating v we observe

Y'(0) = ;/000 e %u(s)ds — g /OOO se” % (s)ds

from which it follows, by integration by parts, that

1

VO =g [ s dus),

where dv is the measure associated to the increasing function v. Similarly,
differentiating and using integration by parts again we get

1

/ s%e7% du(s) > 0.

wl!(g) — 2 ;

Consequently, 1) is convex. ]

Proof of Lemma 3.2. Let T' > 0 be fixed. Then, by [33, Theorem 12], there
exists a Brownian motion W and a kernel K7 € L%(]0,T]?) such that we
have the representation

T
Xy = / Kp(t,s)dWsg,
0
for all t < T. Consequently X; belongs to the 15* Wiener chaos for all ¢ > 0.

Then note that
X? — E[X}] = 2Hy(Xy).

Consequently, it belongs to the 2" Wiener chaos. Finally, note that, because
~ is continuous, the integral

1 T
= 2Ho(X:)dt
7| 2mx

can be defined as a limit in L2(2) in the 2"¢ Wiener chaos. The claim follows
from this. O
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Proof of Lemma 3.3. The claim is an obvious consequence of Isserlis’ theo-
rem. O

Proof of Lemma 3.4. By the symmetry ~(s,t) = y(t, s)

/[ " Y(t1, ta)y(ta, t3)y(t3, ta)y(ta, t1) dt1dtadtzdiy
0,7

- /OT/OT </OT’7(t1»t2)'7(t2,tg)dt2>2dt1dt3
/0 /OT </OT v (t1,t2)] dtz) </OT Iy (t1, t2) |y (t2, t3)? dt2> dt1dts

T
T T T T

/ Sup/ \’Y(t,t2)|dt2/ / [y(t1,to)| dt1 v(t2, t3)* dto | dits
o \tefo,r]Jo o Jo

T 2 7T
sup/ [v(t, t2)| dtz // (ta, t3)? dtgdts.
te[0,7] J0 0 JO

Proof of Lemma 3.5. Note that Qr/y/E[Q%] belongs to the 2°¢ Wiener
chaos and has unit variance. Consequently, by the fourth-moment Proposition
3.2, it suffices to show that

IA

IN

IN

O

2
ElQr] .. C<S“Pte[o,ﬂ Joo.m (¢, s)!ds)

E [Q%] ? B f[O,TP (¢, 8)2 dsdt

Denote
I (T) =/ y(t1,ts)% dtydis,
[0,7]2
I(T) = /[ ]4V(tla752)7(1527753)7(153,754)7@4,751)dt1dt2dt3dt4-
0T

Then, by Lemma 3.3,

EQT] = B(T)’ + 2 (1),
4
E[QZT]2 = ﬁIQ(T)Q,
and, by Lemma 3.4
2

I4(T) < IQ(T).

T
Sup/ |v(t, s)| ds
t€[0,7] J0
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Consequently,

E[Q] ., _ 12B(T) +241(T) — 121,(T)’
(B[Q3F])° 4(T)*

_ ¢ LD

I(T)?

T 2
_Jmwenn )1 s
- I(T)
The claim follows from this. O

Proof of Lemma 3.6. We have
E[(QF)* _ 4T o Jo [B S G S>d8dt_ (A.2)

We (T) ng (T)

By Proposition 2.2 and ergodicity condition A T fo |r(t)|dt — 0 it follows that

l 2 — 7"2 — S)das
- /0 /O B(X,X)]% — r2(t — s)dsdt — 0, (A.3)

Moreover, by symmetry, change-of-variables and the Fubini theorem

/OT/OTm(t—s)stdt— 2/0T/tT7"9(5)2 dids — Q/UTm(t)Z(T—t) dat.

Consequently, by assuming that T > 1,

T 1
/ ro(t)*(T —t)dt > / ro(t)X(T —t)dt > C(T — 1)
0 0

This shows Twy(T) > C which, together with (A.2) and (A.3), implies
E[(Q%)?] ~ wy(T). Also, we have shown the equality

4

T
we(T) = T2/0 ro(t)*(T — t) dt.

Consider then the case [;° rg(t)?dt < co. By the equivalence E[(Q%)?] ~
% foT ro(t)2(T — t) dt, we have

T
/ ?”9 —t dt—/ Tg()dt—f 7“9 tdt
0

Here the first term converges to fo r9(t)? dt < co. For the second term we

have
/ ro(t tdt</ tdt—I—/ ro(t)?tdt — 0
JT

which completes the proof. ]
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Proof of Lemma 3.7. Let us first split

& 1 ..
S ) <x] ()
. Q4 ™) | o [ wolr)
= xGE i E[(QBT)Q] : E[(Q%)ﬂ ( E[(QGT)Q] )
wy(T)
tonl ‘D< E[(Q%)?]””)] ‘M|
< sup|P %<:c] —® (2)
veR E[(Q7)%]
wy(T)
Rl ( E[(Q%)?]"”) o
= A+ As.

For the term Aj, let us first estimate

T
/ |70 (t, s)| ds
0

= / ‘7"9 t—s)+e (HS)TH(O)—G Olrg(s) —e 0 e(t)‘ ds

—0t
< / \rgt—s)|ds+ ]ra Gt/ Iro(s)| ds +\T’9 )
_ot
+1
< / \rg(t—s)]ds—i-e_et/ |r9(s)\ds+( 0) Ir0(0)]
0 0

T T
< / \rg(t—s)]ds—i-/ Ire(s)] ds + C,
0 0

Consequently,

IN

sup / |70 (t, s)| ds

sup / |ro(t — s)|ds + C
t€[0,7]

te[o T)

T—t
= 2 sup/ |ro(u)| du + C
t€[0,T

< /ym )| du +C

_ /yrg( ) du+ C.
0
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Since we are interested in the case T' — oo, we can assume that T is bigger
than some absolute positive constant. Consequently, since rg continuous
with r9(0) > 0, it follows from the estimate above that

T T
sup / |70(t, s)|ds < C/ |To(w)| du.
t€[0,7] /0 0

Therefore, by applying Lemma 3.5 and Lemma 3.6, it follows that A; <
CoRy(T).

Let us then consider the term As. Now, by the mean value theorem,

Ay = 21615 <I>< E%%x) — ®(x)
< ) |
where
we (T
ne(T,x) € |x,z+ E[(QC;%)L]J;
Since EI[?QQ(T)) 2] ~ 1, it follows that

Consequently, by the asymptotic equivalence of wy(7T") ~ E[(Q(’T)z], it remains

to show that
7| Vo) - \/BQ0)) <09/ Iro() dt.

(Actually, we show that the left hand side is bounded.) For this purpose,
we estimate, by using the inequality |/a — v/b| < /]a — b| and the identity
a? — b* = (a + b)(a — b), that

E[(Q7)%

V2 \//OT/OT ro(t — s)?dsdt — \//OT/OT Yo(t, s)% dsdt

[T@(t —5)% —(t, s)?] dsdt‘

We (T) —

IN

(ro(t — s) +y0(t, s)) (ro(t — s) — va(t, s))dsdt|.
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By applying Proposition 2.2 to the estimate above, we obtain

T ‘\Fwem —/ElQ

< C@\/

Now, [re(t — s)| < 74(0) and [yg(t,s)| < 79(0) + 1, by Proposition 2.2.
Consequently, the integral above is bounded, and the proof is finished. [

T T
// (ro(t — s) + 7o(t, s))e-0min(sh) dsdi|.
0J0

Proof of Lemma 4.1. Let
a(t) = ap1(t) = He'/H,
Then 1
ri o) = ge " | (@@ +1)" = (at) - 1)*"] .

By the Taylor’s theorem

(a®)®" +1)" = a@" + ke,

(a(t) — 1) = a()? K —2H (82K,
for some &(t) € [a(t), a(t) + 1] and n(t) € [a(t) — 1, a(t)]. Consequently,

rio(t) ~ Crxee " [a) ! +a(t)* 5]

1 1 1
~ CHK,QQ*“ max{ﬁ*LHﬁ*ﬁ}’

which shows the exponential decay. O
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