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A B S T R A C T   

In the era of digitalization, cryptocurrencies have become an alternative asset for both retail and 
institutional investors. While the emerging digital ecosystem based on blockchain technology 
offers numerous advantages, it is important to be aware of potential risks such as hacking in
cidents. In the 2011–2021 period, approximately 1.7 million units of Bitcoin were stolen due to 
criminal activity with losses exceeding $700 million. This paper models the distribution of stolen 
coins as a fractal process using power laws to estimate the expected losses from Bitcoin cyber
attacks. Our results show that naïve statistics dramatically underestimate the expected loss by 
more than 70 percent. Our findings have important policy implications with respect to the urgent 
need for cryptocurrency market oversight by governments and regulatory agencies.   

1. Introduction 

Since the launch of Bitcoin in 2009, cryptocurrencies - a finance-related application of blockchain technology - have rapidly 
expanded. Today, distributed ledger technology and digital currencies are reshaping the way businesses operate. Benefits include 
decentralization, discretion, increased efficiency in terms of faster settlements, among others. Because technological developments 
improve the functioning of the financial system, it is not surprising that cryptocurrencies and blockchain systems have become popular 
topics. However, new digital financial markets are not without risks. Extraordinarily high levels of price volatility as well as 
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cybersecurity are major obstacles to more widespread adoption. Also, governments and regulatory agencies are struggling to keep pace 
with rapid changes in these newly emerging digital ecosystems. 

On August 10, 2021, a severe cyberattack took place in cryptocurrency markets. Hackers stole approximately $600 million in 
cryptocurrency from a protocol known as PolyNetwork wherein users can swap tokens across multiple blockchains.2 Due to its eco
nomic magnitude, this cyberattack received widespread media attention with coverage on news broadcasts around the world. The 
natural question that arises is: What is the expected loss in terms of stolen coins from cyberattacks? 

In view of increasing risks and losses of cryptocurrency theft, this paper investigates 58 hacking incidents in the Bitcoin market 
from 2011 to 2021. We find that 1.7 million units of Bitcoin were stolen, or about 10% of overall Bitcoin supply. Losses due to Bitcoin 
hacking incidents accounted for more than $700 million, which highlights the economic magnitude of this criminal activity. To deepen 
our understanding of cyberattacks, we explore the statistical distribution of Bitcoin hacking incidents. Subsequently, we compute the 
expected loss in terms of stolen coins using a fractal process.3 The usage of a fractal process is motivated by Taleb (2020), who argued 
that the tail exponent of a power law function captures (by extrapolation) the low-probability deviation not seen in the data and plays 
an important role in determining the mean. As shown in Cirillo and Taleb (2020), using naïve statistics may dramatically underes
timate risk.4 We test the power law null hypothesis using a goodness-of-fit test based on Kolmogorov–Smirnov (KS) distance. Moreover, 
we test the plausibility of our model by means of Bayes’ rule. Finally, we employ tools borrowed from extreme value theory as a 
robustness check to determine if the parent distribution is consistent with the assumed Pareto-type distribution. 

This study contributes to extant literature in a number of ways. For example, a recent study by Grobys (2021a) explored the effects 
of cyberattacks due to hackings on uncertainty in the Bitcoin market. Using EGARCH models and daily data from 2013 to 2017 related 
to 29 Bitcoin hackings, he found that Bitcoin volatility dramatically increased on the day of hacking incidents in addition to the fifth 
post-trading day. The current research extends the Grobys study in two ways. First, we identify the underlying distribution of 
cyberattacks, which is crucial to making accurate statistical inferences. To do this, we apply Bayes’ rule to explore which distribution is 
most likely to have generated extreme events in the data. Second, we compute an estimate of expected loss given the occurrence of a 
Bitcoin cyberattack. As of October 21, 2021, the market capitalization of Bitcoin exceeded $1.2 trillion; hence, the size of the Bitcoin 
market is substantial (Fry and Cheah, 2016). As losses due to Bitcoin hacking incidents exceed $700 million, the societal impact of this 
criminal activity is considerable. 

From a broader perspective, this study contributes to the emerging literature on new risks associated with digital ecosystems. In this 
respect, Foley, Karlsen, and Putniņš (2019) proposed a model to identify illegal activities in Bitcoin and found that about one-quarter of 
all users (26%) and close to one-half of Bitcoin transactions (46%) are associated with illegal activity. Grobys and Sapkota (2020) 
explored the default risks of cryptocurrencies and found that 60% of cryptocurrencies eventually end up in default. Hileman and 
Rausch (2017) documented that 73% of exchanges control customers’ private keys to funds denominated in cryptocurrency, an 
attractive target for cyber criminals. These studies showed that, unlike traditional asset markets, new digital financial markets involve 
different types of risk, including fraud, money laundering, credit, and hacking risks. Extending this literature, our study provides a 
novel perspective by estimating expected losses given the occurrence of hacking incidents. Estimating cyberattack losses is a crucial 
part of potential risk assessment, especially in view of the fact that institutional investors store considerably more funds in their digital 
wallets than retail investors. Relatedly, PricewaterhouseCoopers recently documented that the total assets under management (AuMs) 
of crypto hedge funds globally increased from about $1 billion in 2018 to more than $2 billion in 2019, whereas average AuMs 
increased from about $22 million to $44 million.5 

Finally, our study contributes to studies that explore the degree to which human-engineered systems are exposed to tail risks. 
Because fat-tailed distributions are often modeled using fractal distributions, studies by Clauset, Shalizi, and Newman (2009) and 
Gabaix (2009) examined whether real world data sets from a range of different disciplines are governed by fractal processes. Notably, 
for the majority of the phenomena investigated, the power law null hypothesis could not be rejected. Recent finance studies have used 
power law functions for modeling cross-sectional stock returns (Warusawitharana, 2018), the realized variance of asset markets 
(Grobys, 2021b), and the volatility processes of cryptocurrencies (Grobys et al., 2021). Lux and Alfarano (2016) have provided an 
interesting overview of power laws in financial economics. Our study adds to this body of literature by taking a fractal perspective of 
Bitcoin hackings. As shown in forthcoming empirical findings, estimated losses from hackings are very different from naïve statistics. 

Our results indicate that the share of the cumulative 20% of hacking incidents with the largest amounts of Bitcoin stolen on the 
cumulative total of the distribution exceeds 80%. We interpret this as strong evidence for a non-Gaussian process. Using a recently 
proposed test based on Bayes’ rule, we find that other often-used distributions can be ruled out as possible candidates governing the 
distribution of cyberattacks in the Bitcoin market. Because the distribution closely resembles the Pareto 80/20 distribution, we model 
cyberattacks as a fractal process. Maximum likelihood estimation (MLE) suggests a power law process that is close to a fractal process 
with no defined theoretical mean, thereby implying an infinite loss (i.e., t-statistic 7.96). Because Bitcoin supply is limited, we hy
pothesize that the mean of lost coins is finite. Our statistical tests strongly support our hypothesis. Estimating the exponent of a power 
law process via MLE allows us to compute the shadow mean. By combining the shadow mean with the sample mean for the data not 

2 See https://www.bloomberg.com/news/articles/2021–08-10/hackers-steal-600-million-in-likely-largest-defi-crypto-theft.  
3 Fractality describes statistical self-similarity. As an example, the well-known Pareto 80/20 distribution implies that the largest 20% of the 

observations correspond to 80% of the cumulative total. Fractality implies that 4% (e.g., the largest 20% of the largest 20%) correspond to 64% (e. 
g., 80% of 80%). Since fractal processes are often termed power laws, we use these terms interchangeably.  

4 A detailed discussion on this issue and comparisons of various methodologies are provided in Taleb (2020).  
5 See https://www.pwc.com/gx/en/financial-services/pdf/pwc-elwood-annual-crypto-hedge-fund-report-may-2020.pdf. 
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governed by a fractal process, we compute the overall expected loss at 106,171.49 coins, which is almost four times higher than the 
naïve sample average equal to 29,050.18 coins. We find that the vast majority of observations do not matter for computing the ex
pected loss as the most salient statistical information resides in the tail of the distribution. Since naïve risk management dramatically 
underestimates the expected loss due to cyberattacks in the Bitcoin market, our findings have significant policy implications with 
respect to the urgent need for cryptocurrency market regulations by governments and regulatory agencies to protect investors from 
potentially severe losses. 

Table 1 
Hacking incidents in the Bitcoin market.  

S. No. Date BTC BTC Price Lost Market Cap Event Circulating Supply BTC 

1 2011-06-13  25000.01  19.80  502,750.20 User Allinvain hacked 6,528,850 
2 2011-06-19  2000.00  17.50  46,970.91 MtGox theft 6,594,300 
3 2011-06-25  4019.00  17.50  72,000.00 MyBitcoin theft 6,662,400 
4 2011-07-26  17000.00  17.50  236,000.00 Bitomat loss 6,908,450 
5 2011-07-29  78739.58  13.50  1,110,544.00 MyBitcoin theft 6,933,850 
6 2011-10-06  5000.00  4.70  50,000.00 Bitcoin7 hack 7,416,650 
7 2011-10-28  2609.00  3.20  8,115.12 MtGox loss 7,546,750 
8 2012-03-01  46653.00  4.90  228,000.00 Linode hacks 8,462,900 
9 Jan-Apr 2012  1000.00  5.00  5,000.00 Bitscalper Scam 8,898,050 
10 Feb2012  2211.07  4.97  10,978.00 Andrew Nollan Scam 8,455,100 
11 2012-04-13  3171.00  4.90  15,537.90 Betcoin hack 8,776,350 
12 2012-04-27  30000.00  5.10  153,000.00 Tony76 Silk Road scam 8,873,500 
13 2012-05-12  19980.00  4.57  91,306.00 Bitcoinica hack 8,993,400 
14 2012-07-04  1853.00  5.30  9,820.90 MtGox hack 9,376,750 
15 2012-07-13  40000.00  5.90  305,200.00 Bitcoinica theft 9,445,700 
16 2012-07-17  180819.00  6.20  1,121,077.80 BST Ponzi scheme 9,476,850 
17 2012-07-31  4500.00  6.70  42,000.00 BTC-e hack 9,585,150 
18 2012-09-04  24086.00  10.40  248,088.00 Bitfoor theft 9,860,150 
19 2012-09-28  9222.00  12.40  113,894.00 User Cdecker hacked 10,047,450 
20 2012-10-17  3457.00  11.80  38,000.00 Trojan horse 10,186,150 
21 2012-12-21  18787.00  13.50  253,624.50 Bitmarket.eu hack 10,576,300 
22 2013-02-13  2000.00  25.50  51,000.00 Bit LC Theft 10,774,975 
23 2013-05-10  1454.00  117.20  170,408.80 Vircurex hack 11,137,850 
24 2013-06-10  1300.00  106.35  138,255.00 PicoStocks hack 11,269,775 
25 2013-10-02  29655.00  114.13  3,384,525.15 FBI seizes Silk Road funds 11,782,875 
26 2013-10-25  144336.00  186.69  26,946,087.84 FBI seizes Silk Road funds 11,900,650 
27 2013-10-26  22000.00  177.32  3,901,040.00 GBL scam 11,905,625 
28 2013-11-07  4100.00  296.41  1,215,281.00 Inputs.io hack 11,960,800 
29 2013-11-12  484.00  360.33  174,399.72 Bitcash.cz hack 11,981,475 
30 2013-11-29  5896.00  1131.97  6,674,095.12 PicoStocks hack 12,054,375  

S. No. Date BTC BTC Price Lost Market Cap Event Circulating Supply BTC 

31 2013-11-29 5400.00  1131.97  6,112,638.00 Sheep Marketplace closes 12,054,375 
32 2014-02-13 4400.00  605.24  2,663,056.00 Silk Road 2 hacked 12,391,375 
33 2014-02-25 744408.00  538.71  401,020,033.68 MtGox collapse 12,444,500 
34 2014-03-04 896.00  666.78  597,434.88 Flexcoin hack 12,472,725 
35 2014-03-04 97.00  666.78  64,677.66 Poloniex hack 12,472,725 
36 2014-03-25 950.00  583.92  554,724.00 CryptoRush hacked 12,560,925 
37 2014-10-14 3894.00  400.87  1,560,987.78 Mintpal hack 13,383,050 
38 2015-01-05 18886.00  274.47  5,183,640.42 Bitstamp hack 13,691,175 
39 2015-01-28 1000.00  233.91  233,910.00 796 Exchange hack 13,772,100 
40 2015-02-15 7170.00  234.82  1,683,659.40 BTER hack 13,840,225 
41 2015-02-17 3000.00  243.61  730,830.00 KipCoin hack 13,848,050 
42 2015-05-22 1581.00  240.35  379,993.35 Bit?niex hack 14,189,850 
43 2015-09-15 5000.00  230.30  1,151,500.00 Bitpay ?shing scam 14,616,850 
44 2016-01-15 11325.00  364.33  4,126,037.25 Cryptsy hack 15,086,025 
45 2016-04-07 315.00  422.74  133,163.10 ShapeShift hack 15,404,775 
46 2016-04-13 154.00  423.73  65,254.42 ShapeShift hack 15,428,200 
47 2016-05-14 250.00  455.67  113,917.50 Gatecoin hack 15,544,975 
48 2016-08-02 119756.00  547.47  65,562,817.32 Bit?nex hack 15,792,425 
49 2016-10-13 2300.00  636.79  1,464,617.00 Bitcurex hack 15,927,812 
50 2017-04-22 3816.00  1231.71  4,700,205.36 Yapizon hack 16,288,550 
51 2017-12-06 4736.00  14291.50  67,684,544.00 NiceHash hacked 16,724,975 
52 2018-04-09 438.00  6770.73  3,300,000.00 Coin Secure hack 16,986,000 
53 2018-09-14 5966.00  6512.71  38,854,827.86 Zaif hack 17,266,000 
54 2019-05-07 7000.00  5829.50  40,806,500.00 Binance Phishing attack 17,684,537 
55 2020-07-11 336  9240.35  6,658,499.36 Cashaa hack 18,431,243 
56 2020-12-21 292  22803.08  2,516,010.70 EXMO exchange hack 18,576,643 
57 2020-12-24 106  23735.95  2,516,010.70 Livecoin hack 18,582,818 
58 2021-08-19 107  46717.58  4,998,781.06 Liquid Global hack 18,794,212  
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The study is organized as follows. The next section describes the data. The third section provides the empirical framework, and the 
last section concludes the study. 

2. Data 

We investigate the distribution of stolen coins due to hacking incidents in the Bitcoin market covering the 2011–2021 period. The 
data are reported in Table 1.6 For example, in the well-known MtGox collapse on February 25, 2014, 744,408 coins were stolen 
amounting to $401.02 million, or 5.98% of the coeval circulating supply of Bitcoin at 12,444,500 coins. From Table 2 we observe that 
the kurtosis of both distributions exceeds 40, which is a strong statistical indication of fat tails. The sample average is 29,050.18 stolen 
coins, whereas the median is considerably lower and corresponds to 4,059.00. The sample standard deviation is as high as 101,615.65. 
It is important to note that the share of the cumulative 20% of the economically largest cyberattacks on the cumulative total of the 
distribution is 88%, which is very close to the well-known Pareto 80/20 distribution. Because there is no other distribution class apart 
from power laws that allows for modeling the observed fat tails, we model the underlying process governing stolen units of Bitcoin 
using a fractal process. 

3. Empirical framework 

Because many human-engineered systems are typically governed by Pareto distributions (and related power laws), Taleb (2020, p. 
91) posited: “There are a lot of theories on why things should be power laws, as sort of exceptions to the way things work probabi
listically. But it seems that the opposite idea is never presented: power laws should be the norm, and the Gaussian a special case.” Given 
descriptive statistics of our data discussed in the previous section, we model the distribution stolen coins as a fractal process and test 
the following power law null hypothesis: 

P(X > x) = p(x) = Cx− α, (1)  

where C = (α − 1)xα− 1
MIN with α ∈ {R+|α > 1 }, x ∈ {R+|xMIN ≤ x < ∞ }, xMIN is the minimum number of coins stolen, and α is the 

magnitude of tail exponent.7 It can be shown that the expectation, or E[X], is given by 

E[X] =
∫∞

xMIN

xp(x)dx =
(α − 1)
(α − 2)

xMIN , (2) 

whereas the second moment, or E
[
X2
]
, is defined as 

E
[
X2] =

∫∞

xMIN

x2p(x)dx =
(α − 1)
(α − 3)

x2
MIN , (3) 

and higher moments of order k are analogously defined as 

E
[
Xk] =

(α − 1)
(α − 1 − k)

xk
MIN . (4) 

From Eq. (2), we see that the mean only exists for α > 2, whereas the variance only exists for α > 3. Following White et al. (2008) 
and Clauset et al., we employ MLE and estimate the tail exponent as 

α̂ = 1+N

(
∑N

i=1
ln
(

xi

xMIN

))− 1

, (5) 

Table 2 
Descriptive statistics for Bitcoin hackings.  

Metric Sample estimate 

Mean  29,050.18 
Median  4,059.50 
Std. Dev.  101,615.65 
Minimum  97.00 
Maximum  744,408.00 
Skewness  6.43 
Kurtosis  44.86  

6 We collected the data on hackings by merging multiple sources, such as Table 1 and Table A.3 of Grobys (2021a), Table 3 of Biais, Bisiere, 
Bouvard, Casamatta, and Menkveld (2019), zdnet.com, coindesk.com, bbc.com, and bitcointalk.org.  

7 We follow notation in Clauset, et al. (2009). 
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where α̂ denotes the MLE estimator, and N denotes the number of sample observations exceeding xMIN, that is, xi ≥ xMIN. As seen from 
Eqs. (2)–(4), minimum value xMIN is essential for the calculation of the power law exponent. Fig. 1 plots MLE estimators α̂ depending 
on xMIN. This plot is often referred to as a Hill plot.8 A question concerns which MLE estimator α̂ in association with xMIN is most 
accurate in describing the data-generating process and in line with the technical constraints of Bitcoin. Following Clauset et al., we 
estimate lower threshold xMIN by making use of the Kolmogorov-Smirnov (KS) approach. This statistic is simply the maximum distance 
D between the data and fitted cumulative density functions (CDFs) given by 

D = MAXx≥xMIN |S(x) − P(x) |, (6)  

where S(x) is the CDF of the data for the observation with a value of at least xMIN, and P(x) is the CDF for the power law model that best 
fits the data in the region of x ≥ xMIN. The estimate of xMIN is the value of x̂MIN that minimizes D. Fig. 2 plots D depending on xMIN. We 
observe there that D reaches a minimum at 0.1081 corresponding to x̂MIN = 17,000. Hence, according to this approach, the parameter 
vector (α̂, x̂MIN) = (1.99,17,000) is optimal. 

Fig. 1. Hill plot. This figure shows the Hill plot for our data on hacking incidents. Following common practice, the x-axis is truncated so that only 
xmin < 50,000 is taken into account. 

Fig. 2. KS distance. This figure plots the KS distance depending on xmin. Following common practice, the x-axis is truncated so that only xmin <

50,000 is taken into account. 

8 For implementing the MLE, we sort our observations in increasing order and use observations i = 1,⋯, 49 as potential candidates for xMIN . 
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Next, to explore whether this estimate is a reasonable choice from a statistical point of view, we simulate 10 million drawings from 
a power law distribution with α = 1.99 and calculate the share of the cumulative 20% of largest observations on the cumulative total of 
the distribution. We find that the latter cumulative total equals 91%, which is larger than our empirical observation of 88%. In a 
simulation experiment searching for α that generates a share of the cumulative 20% of largest observations on the cumulative total 
equal to 88%, we find that the exponent is α = 2.03. Because we know from the Hill plot that the parameter vector (α̂, x̂MIN) =

(2.03,18,787) is another MLE estimator, we test the following hypothesis: 
H0 : α = 2.03 versus H1 : α = 1.99. 
Given that α̂ is normally distributed with a standard deviation of σ̂ = (α̂ − 1)/

̅̅̅̅
N

√
, the corresponding t-statistic is estimated at 0.16 

(p-value = 0.5636). Hence, we cannot reject the null hypothesis. Note also from Fig. 2 that the KS distances are virtually the same. One 
may argue that the parameters α = 2.03 and α = 1.99 are quite close to each other, such that setting α = 1.99 under the null hypothesis 
might not reject it. While this possibility is a valid concern, Taleb (2010, p.265) has observed that: “Just a 0.2 difference in the 
exponent changes the results dramatically - such a difference can come from a single measurement error. This difference is not trivial: 
just consider that we have no precise idea what the exponent is because we cannot measure it directly.” Moreover, there is an economic 
argument for why exponent α should be α > 2. From Eq. (2), we see that α < 2 suggests an infinite or undefined theoretical mean. 
However, because Bitcoin supply is limited, an infinite theoretical mean does not make economic sense. 

To support our hypothesis that α = 2.03, following Clauset et al., we employ the parameter vector (α̂, x̂MIN) = (2.03,18,787) in a 
goodness-of-fit test, thereby generating a p-value that quantifies the plausibility of the power law null hypothesis. Specifically, this test 
compares D from Eq. (6) with distance measurements for comparable synthetic data sets drawn from the hypothesized model. The p- 
value is defined to be the fraction of the synthetic distances that are larger than the empirical distance. Given a significance level of 5%, 
the power law null hypothesis is not rejected, as the difference between the empirical data and the model can be attributed to statistical 
fluctuations alone. Using the corresponding D = 0.1190, which is associated with (α̂, x̂MIN) = (2.03,18,787) and 1,000 synthetic data 
series, we find that the estimated p-value is 0.4070. Hence, we cannot reject our null hypotheses α = 2.03. For these reasons, we utilize 
the empirically and economically optimal MLE estimator (α̂, x̂MIN) = (2.03,18,787) 9 

Using Eq. (2), we compute the shadow mean as E[x] = 645,020.33 coins, which is considerably larger than the sample tail mean 

estimated at #xi≥x̂MIN
#xi

∑

xi≥x̂MIN
xi = 102,873.70 coins. In this notation, #xi ≥ x̂MIN means that we count the number of observations for 

which xi ≥ x̂MIN is satisfied. The difference is enormous with the shadow mean exceeding the sample tail mean by a factor of 6.27. As 
discerned by Taleb (2020) and mentioned earlier, the tail exponent of a power law function captures (by extrapolation) low- 
probability deviations which largely determine the mean. Interestingly, only 25.86% of the distribution is governed by a power 
law process. Because the vast majority of the distribution of stolen coins is not governed by a power law process, following Cirillo and 

Taleb (2020), we can compute the corresponding expectation simply as the sample average, which is #xi<x̂MIN
#xi

∑

xi<x̂MIN
xi = 3,297.79. 

Combining the shadow mean with the latter, we compute the overall expected loss as 106,171.49 coins, which is 3.65 times higher 
than the naïve sample average equal 29,050.18 coins.10 In this respect, we should note that the vast majority of observations (74.14%) 
do not matter for computing the expected loss, as most relevant statistical information resides in the tail of the distribution. Naïve risk 
management may dramatically underestimate the expected loss in terms of stolen coins in Bitcoin cyberattacks. 

To test the reasonability of our power law hypothesis, we apply Bayes’ rule as proposed in Taleb (2020). As an example, it is 
worthwhile to consider the MtGox cyberattack. In terms of stolen coins, this well-known attack on February 25, 2014 represents the 
largest theft with 744,408.00 coins stolen. Given our power law model with (α̂, x̂MIN) = (2.03, 18, 787), we can compute P(X >

744,408.00) = 2.81%. Assuming a normal distribution, such an event corresponds to a 6.72-sigma event with a corresponding 
probability of 9.09E–12. According to Benoit Mandelbrot, events of this magnitude never happen.11 In this regard, Taleb’s statistical 
test can be used to explore how likely it is that a data-generating process is thin-tailed as opposed to fat-tailed. Specifically, using 
Bayes’ rule, the conditional probability that the underlying distribution governing this event is normally distributed, given that a 6.72- 
sigma event occurred on February 25, 2014, is defined as 

P(ND|E) =
P(ND)P(E|ND)

(1 − P(ND) )P(E|PL) + P(ND)P(E|ND)

where P(ND|E) is the probability that the distribution is Gaussian given that the event occurred, P(E|ND) is the probability of the event 
given that the distribution is normal, and P(E|PL) is the probability of the event given that the distribution is a power law process with 
Φ = (α̂, x̂MIN) = (2.03,18,787). Assuming various probabilities for P(ND), we can compute the likelihood of P(ND)|E). Table 3 reports 

9 It is interesting to note that (α̂, x̂MIN) = (2.03,18,787) is the only MLE estimator satisfying α̂ > 2. 00. We used the codes plfit and plpva written 
by Aaron Clauset to estimate the α̂ and the goodness-of-fit test. Since the code plfit does not provide the corresponding x̂MIN as additional output, we 
assess the corresponding x̂MIN directly from the Hill plot. The codes are available at http://www.santafe.edu/~aaronc/powerlaws/. We would like 
to thank Aaron Clauset for making these codes available.  
10 As per the power laws properties specified earlier, the variance does not exist. Cirillo and Taleb (2016) derived variances for fractal processes 

with seemingly infinite mean by means of an application of extreme value theory. Unlike Cirillo and Taleb (2020), our study deals with a fractal 
process exhibiting a mean that is not necessarily infinite though close to infinity. Provided α < 2 is satisfied, Cirillo and Taleb’s (2016) method can 
be applied, which is beyond the scope of the present study and therefore left for future research.  
11 See Benoit Mandelbrot’s lecture at MIT is available at https://www.youtube.com/watch?v=ock9Gk_aqw4. 
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the results. Assuming that the normal distribution and the power law process are equally likely, the likelihood that the distribution is 
normal given a 6.72-sigma event is virtually zero. Even if we assume that the probability that the underlying data-generating process is 
normally distributed is as high as 99.99%, the likelihood that the distribution is normal given a 6.72-sigma event is near zero. Thus, we 
can rule out the normal distribution as the underlying data-generating process governing stolen units of Bitcoin. 

As an additional robustness check, we use the same approach to test the exponential distribution versus our suggested fractal 
process. Given that a 6.72-sigma event occurred on February 25, 2014, the conditional probability that the underlying distribution 
governing this event is exponentially distributed equals 1.21E–03. From Table 4, we observe that assuming the exponential distri
bution and the power law process are equally probable, the likelihood that the distribution is exponential given a 6.72-sigma event is 
less than 5%. Even if we assume that the probability that the underlying data-generating process is exponentially distributed is as high 
as 90%, the likelihood that the distribution is exponential conditional on the occurrence of a 6.72-sigma event is only 28%. While we 
cannot entirely rule out the exponential distribution, we need to make an unreasonably strong assumption about how likely the 
exponential distribution would be, given the observed properties of the underlying data-generating process. Specifically, we need to 
require that the probability of the exponential distribution equals 96% so that the conditional probability of that distribution given the 
observed extreme event slightly exceeds 50%.12 Of course, this assumption is highly improbable. 

As an additional robustness check, we conduct an implicit test of the power law hypothesis borrowed from extreme value theory 
(EVT). In EVT the generalized Pareto distribution (GPD) is often used to model the tails of a parent distribution given by: 

GPD(ξ, β) = 1 −

(

1 +
ξz
β

)− 1
ξ

if ξ ∕= 0 (7.1) 

Table 3 
Testing the normal distribution assumption 
against a power law function.  

P(ND) P(ND)|E)

0.50 3.25E–10 
0.90 2.92E–09 
0.99 3.21E–08 
0.999 3.24E–07 
0.9999 3.25E–06 
1 1 

We apply Bayes’ rule as outlined in detail by 
Taleb (2020) to investigate how likely the data- 
generating process of cyberattacks in the Bitcoin 
market is normally distributed as opposed to a 
power law process with Φ = (α, xMIN) = (2.03,
18, 787). Assuming that the process follows a 
normal distribution, the 6.72-sigma event of 
February 25, 2014 occurs with probability 
9.09E–12, whereas the corresponding probabil
ity that the data are governed by our estimated 
power law process is 0.0280. According to 
Bayes’ rule, the conditional probability that the 
underlying distribution governing this event 
follows a normal distribution given the occur
rence of a 6.72-sigma event is defined as 
P(ND|E) =

P(ND)P(E|ND)
(1 − P(ND) )P(E|PL) + P(ND)P(E|ND)

, 

where P(ND|E) is the probability that the distri
bution is Gaussian given that the event occurred, 
P(E|ND) is the probability of the event given that 
the distribution is normal, and P(E|PL) is the 
probability of the event given that the distribu
tion is a power law process with Φ = (α̂, x̂MIN) =

(2.03, 18, 787). Assuming various probabilities 
for P(ND), we can compute the likelihood of 
P(ND)|E). Assuming various probabilities for the 
normal distribution, this table reports the 
computed likelihoods, P(ND|E).  

12 We can say that even then the conditional probability only lightly exceeds 50%. The exact probability is 50.91%. 
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GPD(ξ, β) = 1 − e
− z
β if ξ = 0 (7.2)  

where ξ and β define the shape and scale parameters, respectively, and z ∈ {x|x > u } in which u defines the tail threshold. EVT uses this 
limiting distribution to model tails of distributions, i.e., for data exceeding a certain threshold (or peaks over threshold abbreviated as 
POTs). Even if the main advantage of asymptotic laws used to derive the asymptotic extreme value distributions in Eqs. (7.1)–(7.2) is 
that they do not require knowledge of the parent distribution, it is possible to take into account ξ to draw conclusions concerning the 
parent distribution. 

According to de Zea Bermudez and Kotz (2010), the flexibility of the GPD to assume many different forms enables its application to 
a variety of practical situations. Referring to Eqs. (7.1) and (7.2), we can infer that: (1) ξ > 0 if the GPD reduces to a fat-tailed dis
tribution (e.g., Pareto distribution), (2) ξ = 0 if we have an exponential distribution, and (3) ξ < 0 if we have a thin-tailed distribution. 
For example, a recent study by Cirillo and Taleb (2020) argued that α in Eqs. (1)–(5) can be expressed as α = 1/ξ. Hence, if ξ > 0, we 
can infer that the parent distribution is governed by a power law process. In empirical finance, researchers often use 5% or 1% of the 
largest realizations of a parent distribution and then estimate ξ and β. Using the method of moments (MOM) and the largest 5, 6,…, 14, 
15 observations of the parent distribution, we iteratively estimate ξ and β. That is, in each iteration, the largest 5, 6,…, 14, 15 ob
servations are allocated to the POT cluster, i.e., z ∈ {x|x > u }. We report these estimates in Table A.1 in the Appendix. Strikingly, we 
observe that irrespective of which cluster of the largest observations is used, ̂ξ > 0 for all iterations. Consistent with Cirillo and Taleb, 
we interpret this evidence to mean that the parent distribution is a Pareto-type distribution. However, as noted by de Zea Bermudez 
and Kotz (2010), due to squaring of sample observations, MOM estimators in heavy-tailed or outlier situations can increase sampling 
errors. Thus, the MLE procedure in Eq. (5) could provide a more accurate estimate of the power law exponent. 

Table 4 
Testing the exponential distribution assumption 
against a power law function.  

P(EXP) P(EXP)|E)

0.50 0.0414 
0.90 0.2800 
0.99 0.8105 
0.999 0.9774 
0.9999 0.9977 
1 1 

We apply Bayes’ rule as outlined in detail by 
Taleb (2020} to investigate how likely it is that 
the data-generating process of cyberattacks in 
the Bitcoin market is exponentially distributed 
as opposed to a power law process with Φ = (α,
xMIN) = (2.03,18, 787). Assuming that the pro
cess follows an exponential distribution, the 
6.72-sigma event of February 25, 2014 occurs 
with probability 1.21E–03, whereas the corre
sponding probability that the data are governed 
by our estimated power law process is 0.0280. 
According to Bayes’ rule, the conditional prob
ability that the underlying distribution govern
ing this event follows an exponential 
distribution, given that a 6.72-sigma event 
occurred, is defined as 
P(EXP|E) =

P(EXP)P(E|EXP)
(1 − P(EXP) )P(E|PL) + P(EXP)P(E|EXP)

, 

where, P(EXP|E) is the probability that the dis
tribution is exponential given that the event 
occurred, P(E|EXP) is the probability of the event 
given that the distribution is exponential, 
P(E|PL) is the probability of the event given that 
the distribution is a power law process with Φ =

(α̂, x̂MIN) = (2.03, 18, 787). Assuming various 
probabilities for P(EXP), we can compute the 
likelihood of P(EXP)|E). Assuming various 
probabilities for the exponential distribution, 
this table reports the computed likelihoods, 
P(EXP|E).  
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Finally, we consider whether the estimated power law exponent is stable. As recognized by Taleb (2010), extremely fat-tailed 
processes are typically subject to a masquerade problem, which means that estimated power law exponents are likely to be over
estimated (viz., a larger exponent implies a smaller role for large deviations). One manifestation of this problem is that an event may be 
less Black Swannish than perceived. It can take a considerable length of time for some fractal processes to reveal their properties, such 
that a shock’s severity is underestimated. To investigate whether our estimate is prone to overestimation, we restrict the sample to the 
end of 2018. Again employing the KS distance D suggests that the parameter vector (α̂, x̂MIN) = (1.99,17,000) to be optimal. However, 
testing the null hypothesis α = 2.03 using the goodness-of-fit test as proposed in Clauset et al. and 1,000 synthetic data series, the 
estimated p-value of 0.4010 suggests that we cannot reject the null hypothesis. Hence, we infer that our results are not sample specific. 

Lastly, a model should reasonably resemble the properties of the underlying data-generating process. Perfect data fitting is not 
possible, which only the empirical distribution can provide. Interestingly, Taleb (2020) argued that the (nonparametric) empirical 
distribution is not valid in the sense that it misrepresents the realizations of the distribution in the tails. In fact, future maximums are 
poorly tracked by past data without some intelligent extrapolation. Power law functions address this issue. The tail exponent of a 
power law process captures (via extrapolation) low-probability deviations in the data and is a major determinant of mean estimation. 
Moreover, it is important to note that MLE, which is used in this study, is a valid method even if we are dealing with fat-tailed data, 
whereas the naïve sample cannot be used. Taleb stressed that the law of large numbers (LLN) either does not work in the presence of fat 
tails or works too slowly. Because MLE is a valid estimation method for fat-tailed data, he proposed a two-step estimation procedure 
when deriving moments from power law functions: (1) the power law exponent is estimated via MLE, and (2) the theoretical moments 
for the corresponding power law distribution are estimated. We adopt this procedure in the present study; as such, we do not deviate 
from the power law assumption, which Taleb believed should be standard practice. 

4. Conclusion 

This study investigated the expected loss in terms of stolen coins for cyberattacks in the Bitcoin market. We found that the naïve 
sample mean underestimates the expected loss by more than 70 percent compared to a model based on a fractal process using power 
laws. We modeled the distribution of stolen coins as a fractal process and estimated the expected loss given a cyberattack to be 
106,171.49 coins. Assuming Bitcoin is traded above $60,000, the expected loss would be $11.3 billion.13 Also, the well-known MtGox 
attack on February 25, 2014, in which 744,408.00 coins were stolen, would yield a loss of $44.7 billion in today’s market environment. 
Notably, our model suggests that we have not seen the largest cyberattack yet. 

Taleb and Cirillo have argued that it is perilous to employ naïve but reassuring statistics as a motivation for policymaking by 
governments or regulatory agencies. The more fat-tailed the distribution of losses from cybercrime, the greater the extent to which 
pertinent statistical information resides in the extremes rather than in the bulk of the distribution. Using our approach to investigate 
the distribution of stolen coins in cyberattacks, an important implication for policymakers is that more accurate risk assessments are 
needed to guide government and regulatory oversight of the rapidly evolving digital financial market. 

While it is relatively difficult for hackers to gain access to the blockchain, they can easily steal bitcoins by accessing the digital 
wallets of naïve users through various scamming techniques. Also, hackers manipulate the market by using the trading system of the 
crypto exchanges. In many cases, the exchanges reimburse the lost coins by distributing their coins or tokens to their clients as a 
compensation. We have shown that the overall estimated loss is almost four times larger than the sample averages of all previous 
losses. Thus, we recommend that policymakers impose stricter regulation of crypto exchanges to improve cyberspace security. 

Some exchanges have been permanently shut down after a large hacking incident. For example, the Russian crypto exchange 
Livecoin was closed after it lost about $19 million worth of funds due to a cyberattack on their trading system. Clients accused the 
exchange of a possible exit scam, but no legal action was taken after the exchange distributed the remaining fund to users. One can 
speculate that both EXMO and Livecoin exchanges were hacked by the same attackers as identical wallet addresses were used by the 
hacker(s). We believe that, if they had not ignored lower magnitude hacking incidents, the exchanges could have stopped the hacking 
incident from happening in the first place or at least taken measures to mitigate losses. 

Faced with a cyberattack, cryptocurrency exchanges typically notify the security breach to local law enforcement authorities. 
Unfortunately, no response occurs in most cases. Based on our findings of potential large losses from cyberattacks, we advocate that 
governments implement stricter assessment tests of cybersecurity systems before issuing a permit or license to cryptocurrency ex
changes. Relatedly, the Financial Conduct Authority (FCA) requires that any company carrying out activity related to crypto-assets in 
the U.K. must register and comply with anti-money laundering and counter-terrorist financing requirements. Since the risks of 
cyberattacks are considerably larger, we recommend that regulators adopt policies to harden cybersecurity systems and therefore 
augment current anti-money laundering and counter-terrorist financing requirements. Furthermore, regulators should require ex
changes to establish reserve funds as insurance against cybersecurity threats for users. 

In terms of future research, because our study provided estimates of Bitcoin losses due to cyberattacks using an unconditional 
probability function modeling approach, future research is encouraged using a conditional probability function approach. 

13 The closing price of Bitcoin on October 29, 2021 was $62,227.96. 
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Table A1 
Generalized Pareto Distribution.  

#obs ξ β E[u]

5  0.08  233,205.33  255,099.28 
6  0.15  186,393.72  222,103.26 
7  0.20  155,566.39  197,678.84 
8  0.23  132,702.80  178,262.65 
9  0.26  116,302.72  163,122.77 
10  0.28  103,379.12  150,606.07 
11  0.30  93,263.20  140,291.86 
12  0.31  84,996.58  131,546.25 
13  0.33  78,090.05  124,012.41 
14  0.34  72,281.44  117,487.56 
15  0.34  67,386.28  111,826.36 
Mean  0.26  120,324.33  162,912.48 
t-statistic  10.07  7.59  11.71 

We employ the GPD defined as 

GPD(ξ, β) = 1 −

(

1 +
ξz
β

)− 1
ξ if ξ ∕= 0, 

GPD(ξ, β) = 1 − e

− z
β if ξ = 0, 

to model the tails of the parent distribution. In this model, ξ and β define the shape and scale parameters, respectively, 
and z ∈ {x|x > u } where u defines the tail threshold. Using MOM and the largest 5, 6,…, 14, 15 observations of the 
parent distribution, we iteratively estimate ξ and β. In each iteration, the largest 5, 6,…, 14, 15 observations are 
allocated to the POT cluster; that is, z ∈ {x|x > u }. This table reports for each iteration the number of largest obser
vations (first column), ξ̂ (second column), β̂ (third column), and expected tail mean (fourth column).  
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